Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Aug 10:2024.08.08.607190.
doi: 10.1101/2024.08.08.607190.

Eosinophils protect against SARS-CoV-2 following a vaccine breakthrough infection

Eosinophils protect against SARS-CoV-2 following a vaccine breakthrough infection

Kathryn M Moore et al. bioRxiv. .

Abstract

Waning immunity and the emergence of immune evasive SARS-CoV-2 variants jeopardize vaccine efficacy leading to breakthrough infections. We have previously shown that innate immune cells play a critical role in controlling SARS-CoV-2. To investigate the innate immune response during breakthrough infections, we modeled breakthrough infections by challenging low-dose vaccinated mice with a vaccine-mismatched SARS-CoV-2 Beta variant. We found that low-dose vaccinated infected mice had a 2-log reduction in lung viral burden, but increased immune cell infiltration in the lung parenchyma, characterized by monocytes, monocyte-derived macrophages, and eosinophils. Single cell RNA-seq revealed viral RNA was highly associated with eosinophils that corresponded to a unique IFN-γ biased signature. Antibody-mediated depletion of eosinophils in vaccinated mice resulted in increased virus replication and dissemination in the lungs, demonstrating that eosinophils in the lungs are protective during SARS-CoV-2 breakthrough infections. These results highlight the critical role for the innate immune response in vaccine mediated protection against SARS-CoV-2.

PubMed Disclaimer

Publication types

LinkOut - more resources