Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 1;26(43):9173-9178.
doi: 10.1021/acs.orglett.4c02708. Epub 2024 Aug 30.

Electron Donor-Acceptor Complex-Enabled Autoinductive Conversion of Acylnitromethanes to Acylnitrile Oxides in a Photochemical Machetti-De Sarlo Reaction: Synthesis of 5-Substituted 3-Acylisoxazoles

Affiliations

Electron Donor-Acceptor Complex-Enabled Autoinductive Conversion of Acylnitromethanes to Acylnitrile Oxides in a Photochemical Machetti-De Sarlo Reaction: Synthesis of 5-Substituted 3-Acylisoxazoles

Piyaporn Arunkirirote et al. Org Lett. .

Abstract

A photochemical Machetti-De Sarlo reaction has been developed for preparing 5-substituted 3-acylisoxazoles from acylnitromethanes and terminal alkynes. This photochemical protocol utilizes an innovative electron donor-acceptor complex, generated in situ from acylnitromethanes, catalytic LiOtBu, and 1,1,1,3,3,3-hexafluoro-2-propanol, as a photosensitizer to promote rapid conversion with a broad substrate scope in up to 80% efficiency. A sigmoidal autoinductive kinetic profile is revealed, demonstrating the novel and unique dual catalysis in the first photochemical approach of this reaction.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. First Photochemical Machetti–De Sarlo Reaction
Scheme 2
Scheme 2. Scope of the Reaction
Yields of isolated products. Complex mixture.
Scheme 3
Scheme 3. (a) Reactions of Acylnitromethanes 1 with Other Dipolarophiles, (b) Reactions with Reversed Stoichiometries of Compounds 1 and 2, (c) Reaction in Millimole Scale, and (d) Radical-Trapping Experiments
Yields of isolated products. Complex mixture. Reaction was incomplete. BRSM = based on recovered starting material.
Figure 1
Figure 1
UV–vis absorption spectra of various compositions in HFIP.
Scheme 4
Scheme 4. Proposed Mechanism of the Photochemical Machetti–De Sarlo Reaction

References

    1. Romero N. A.; Nicewicz D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. 10.1021/acs.chemrev.6b00057. - DOI - PubMed
    2. Tay N. E. S.; Lehnherr D.; Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem. Rev. 2022, 122, 2487–2649. 10.1021/acs.chemrev.1c00384. - DOI - PMC - PubMed
    3. Scaiano J. C. A beginners guide to understanding the mechanisms of photochemical reactions: Things you should know if light is one of your reagents. Chem. Soc. Rev. 2023, 52, 6330–6343. 10.1039/D3CS00453H. - DOI - PubMed
    1. Mulliken R. S. Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents. J. Am. Chem. Soc. 1950, 72, 600–608. 10.1021/ja01157a151. - DOI
    2. Mulliken R. S. Molecular Compounds and their Spectra. II. J. Am. Chem. Soc. 1952, 74, 811–824. 10.1021/ja01123a067. - DOI
    3. Mulliken R. S. Molecular Compounds and their Spectra. III. The Interaction of Electron Donors and Acceptors. J. Phys. Chem. 1952, 56, 801–822. 10.1021/j150499a001. - DOI
    4. Hilinski E. F.; Masnovi J. M.; Amatore C.; Kochi J. K.; Rentzepis P. M. Charge-Transfer Excitation of Electron Donor-Acceptor Complexes. Direct Observation of Ion Pairs by Time-Resolved Picosecond Spectroscopy. J. Am. Chem. Soc. 1983, 105, 6167–6168. 10.1021/ja00357a042. - DOI
    5. Rathore R.; Hubig S. M.; Kochi J. K. Direct Observation and Structural Characterization of the Encounter Complex in Bimolecular Electron Transfers with Photoactivated Acceptors. J. Am. Chem. Soc. 1997, 119, 11468–11480. 10.1021/ja971188y. - DOI
    6. Lau W.; Kochi J. K. Charge-Transfer Photochemistry of Aromatic π-Complexes. Hexamethylbenzene and Mercuric Trifluoroacetate. J. Org. Chem. 1986, 51, 1801–1811. 10.1021/jo00360a029. - DOI
    1. Crisenza G. E. M.; Mazzarella D.; Melchiorre P. Synthetic Methods Driven by the Photoactivity of Electron Donor-Acceptor Complexes. J. Am. Chem. Soc. 2020, 142, 5461–5476. 10.1021/jacs.0c01416. - DOI - PMC - PubMed
    2. Fu M.-C.; Shang R.; Zhao B.; Wang B.; Fu Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 2019, 363, 1429–1434. 10.1126/science.aav3200. - DOI - PubMed
    3. de Pedro Beato E.; Spinnato D.; Zhou W.; Melchiorre P. A General Organocatalytic System for Electron Donor–Acceptor Complex Photoactivation and Its Use in Radical Processes. J. Am. Chem. Soc. 2021, 143, 12304–12314. 10.1021/jacs.1c05607. - DOI - PMC - PubMed
    4. Sen P. P.; Saha N.; Raha Roy S. Investigating the Potency of a Phenalenyl-Based Photocatalyst under the Photoelectrochemical Condition for Intramolecular C–S Bond Formation. ACS Catal. 2024, 14, 907–920. 10.1021/acscatal.3c05500. - DOI
    5. Feng W.; Chen Z.; Xue F.; Zhang Z.; Wang B.; Zhang Y.; Xia Y.; Jin W.; Wu S.; Liu C. Visible-Light-Promoted and EDA Complex-Driven [4 + 2] Annulation for the Construction of Naphtho[1′,2′:4,5]imidazo[1,2-a]pyridines. Org. Lett. 2024, 26, 2365–2370. 10.1021/acs.orglett.4c00233. - DOI - PubMed
    6. Adams C. E.; Johnston C. P. Light-mediated catalytic enantioselective difluoroalkylation of β-ketoesters via phase-transfer catalysis. Org. Chem. Front 2024, 11, 3639.10.1039/D4QO00390J. - DOI
    1. Cecchi L.; De Sarlo F.; Machetti F. Isoxazoline derivatives from activated primary nitrocompounds and tertiary diamines. Tetrahedron Lett. 2005, 46, 7877–7879. 10.1016/j.tetlet.2005.09.110. - DOI
    2. Cecchi L.; De Sarlo F.; Machetti F. 1,4-Diazabicyclo[2.2.2]octane (DABCO) as an Efficient Reagent for the Synthesis of Isoxazole Derivatives from Primary Nitro Compounds and Dipolarophiles: The Role of the Base. Eur. J. Org. Chem. 2006, 2006, 4852–4860. 10.1002/ejoc.200600475. - DOI
    3. Machetti F.; Cecchi L.; Trogu E.; De Sarlo F. Isoxazoles and Isoxazolines by 1,3-Dipolar Cycloaddition: Base-Catalysed Condensation of Primary Nitro Compounds with Dipolarophiles. Eur. J. Org. Chem. 2007, 2007, 4352–4359. 10.1002/ejoc.200700276. - DOI
    4. Baglieri A.; Meschisi L.; De Sarlo F.; Machetti F. Competitive Copper Catalysis in the Condensation of Primary Nitro Compounds with Terminal Alkynes: Synthesis of Isoxazoles. Eur. J. Org. Chem. 2016, 2016, 4643–4655. 10.1002/ejoc.201600897. - DOI
    5. Trogu E.; Vinattieri C.; De Sarlo F.; Machetti F. Acid-Base-Catalysed Condensation Reaction in Water: Isoxazolines and Isoxazoles from Nitroacetates and Dipolarophiles. Chem. Eur. J. 2012, 18, 2081–2093. 10.1002/chem.201102264. - DOI - PubMed
    6. Guideri L.; De Sarlo F.; Machetti F. Conjugate Addition versus Cycloaddition/Condensation of Nitro Compounds in Water: Selectivity, Acid-Base Catalysis, and Induction Period. Chem. Eur. J. 2013, 19, 665–677. 10.1002/chem.201202698. - DOI - PubMed
    7. Vadivelu M.; Sampath S.; Muthu K.; Karthikeyan K.; Praveen C. Harnessing the TEMPO-Catalyzed Aerobic Oxidation for Machetti-De Sarlo Reaction toward Sustainable Synthesis of Isoxazole Libraries. J. Org. Chem. 2019, 84, 13636–13645. 10.1021/acs.joc.9b01896. - DOI - PubMed
    1. Mower M. P.; Blackmond D. G. Mechanistic Rationalization of Unusual Sigmoidal Kinetic Profiles in the Machetti-De Sarlo Cycloaddition Reaction. J. Am. Chem. Soc. 2015, 137, 2386–2391. 10.1021/ja512753v. - DOI - PubMed

LinkOut - more resources