Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Sep 3:57:e9.
doi: 10.1017/S0033583524000076.

Solution-based biophysical characterization of conformation change in structure-switching aptamers

Affiliations
Review

Solution-based biophysical characterization of conformation change in structure-switching aptamers

Sophie R Eisen et al. Q Rev Biophys. .

Abstract

Structure-switching aptamers have become ubiquitous in several applications, notably in analytical devices such as biosensors, due to their ease of supporting strong signaling. Aside from their ability to bind specifically with their respective target, this class of aptamers also undergoes a conformational rearrangement upon target recognition. While several well-studied and early-developed aptamers (e.g., cocaine, ATP, and thrombin) have been found to have this structure-switching property, the vast majority do not. As a result, it is common to try to engineer aptamers into switches. This proves challenging in part because of the difficulty in obtaining structural and functional information about aptamers. In response, we review various readily available biophysical characterization tools that are capable of assessing structure switching of aptamers. In doing so, we delve into the fundamentals of these different techniques and detail how they have been utilized in characterizing structure-switching aptamers. While each of these biophysical techniques alone has utility, their real power to demonstrate the occurrence of structural change with ligand binding is when multiple techniques are used. We hope that through a deeper understanding of these techniques, researchers will be better able to acquire biophysical information about their aptamer-ligand systems and accelerate the translation of aptamers into biosensors.

Keywords: DNA; aptamers; biophysical methods; ligand-induced folding; structural change.

PubMed Disclaimer

References

Publication types

LinkOut - more resources