Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Aug 24:2024.08.23.609412.
doi: 10.1101/2024.08.23.609412.

Uncovering methylation-dependent genetic effects on regulatory element function in diverse genomes

Uncovering methylation-dependent genetic effects on regulatory element function in diverse genomes

Rachel M Petersen et al. bioRxiv. .

Update in

Abstract

A major goal in evolutionary biology and biomedicine is to understand the complex interactions between genetic variants, the epigenome, and gene expression. However, the causal relationships between these factors remain poorly understood. mSTARR-seq, a methylation-sensitive massively parallel reporter assay, is capable of identifying methylation-dependent regulatory activity at many thousands of genomic regions simultaneously, and allows for the testing of causal relationships between DNA methylation and gene expression on a region-by-region basis. Here, we developed a multiplexed mSTARR-seq protocol to assay naturally occurring human genetic variation from 25 individuals sampled from 10 localities in Europe and Africa. We identified 6,957 regulatory elements in either the unmethylated or methylated state, and this set was enriched for enhancer and promoter annotations, as expected. The expression of 58% of these regulatory elements was modulated by methylation, which was generally associated with decreased RNA expression. Within our set of regulatory elements, we used allele-specific expression analyses to identify 8,020 sites with genetic effects on gene regulation; further, we found that 42.3% of these genetic effects varied between methylated and unmethylated states. Sites exhibiting methylation-dependent genetic effects were enriched for GWAS and EWAS annotations, implicating them in human disease. Compared to datasets that assay DNA from a single European individual, our multiplexed assay uncovers dramatically more genetic effects and methylation-dependent genetic effects, highlighting the importance of including diverse individuals in assays which aim to understand gene regulatory processes.

PubMed Disclaimer

Publication types

LinkOut - more resources