Protein isoform-centric therapeutics: expanding targets and increasing specificity
- PMID: 39232238
- DOI: 10.1038/s41573-024-01025-z
Protein isoform-centric therapeutics: expanding targets and increasing specificity
Abstract
Most protein-coding genes produce multiple protein isoforms; however, these isoforms are commonly neglected in drug discovery. The expression of protein isoforms can be specific to a disease, tissue and/or developmental stage, and this specific expression can be harnessed to achieve greater drug specificity than pan-targeting of all gene products and to enable improved treatments for diseases caused by aberrant protein isoform production. In recent years, several protein isoform-centric therapeutics have been developed. Here, we collate these studies and clinical trials to highlight three distinct but overlapping modes of action for protein isoform-centric drugs: isoform switching, isoform introduction or depletion, and modulation of isoform activity. In addition, we discuss how protein isoforms can be used clinically as targets for cell type-specific drug delivery and immunotherapy, diagnostic biomarkers and sources of cancer neoantigens. Collectively, we emphasize the value of a focus on isoforms as a route to discovering drugs with greater specificity and fewer adverse effects. This approach could enable the targeting of proteins for which pan-inhibition of all isoforms is toxic and poorly tolerated.
© 2024. Springer Nature Limited.
References
-
- Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008). This article, together with Wang et al., 2008 (ref. 4), demonstrates that most genes undergo alternative splicing. - PubMed - DOI
-
- Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008). This article, together with Pan et al., 2008 (ref. 2), demonstrates that most genes undergo alternative splicing and that alternative transcripts contribute substantially to total transcripts. - PubMed - PMC - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
