Environmental DNA metabarcoding reveals the influence of environmental heterogeneity on microeukaryotic plankton in the offshore waters of East China Sea
- PMID: 39233035
- DOI: 10.1016/j.envres.2024.119921
Environmental DNA metabarcoding reveals the influence of environmental heterogeneity on microeukaryotic plankton in the offshore waters of East China Sea
Abstract
Microeukaryotic plankton are essential to marine food webs and biogeochemical cycles, with coastal seas playing a critical role in aquatic ecosystems. Understanding the diversity of microeukaryotic plankton, deciphering their community structure and succession patterns, and identifying the key factors influencing these dynamics remain central challenges in coastal ecology. In this study, we examine patterns of biodiversity, community structure, and co-occurrence using environmental DNA (eDNA)-based methods. Our results show a linear correlation between α-diversity and distance from the shore, with nutrient-related factors, especially inorganic nitrogen, being the primary determinants of the spatial distribution of plankton communities. Alternation of coastal habitat have shifted the succession patterns of coastal eukaryotic plankton communities from stochastic to deterministic processes. Additionally, our observations indicate that the topology and structure of eukaryotic plankton symbiotic patterns and networks are significantly influenced by environmental heterogeneity such as nutrients, which increase the vulnerability and decrease the stability of offshore ecological networks. Overall, our study demonstrates that the distribution of microeukaryotic plankton communities is influenced by factors related to environmental heterogeneity.
Keywords: Community assembly mechanism; Ecological network; Environmental DNA; Environmental heterogeneity; Microeukaryotic plankton.
Copyright © 2024. Published by Elsevier Inc.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
