Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug 14;6(1):obae030.
doi: 10.1093/iob/obae030. eCollection 2024.

Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of Astyanax mexicanus

Affiliations

Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of Astyanax mexicanus

N Holtz et al. Integr Org Biol. .

Abstract

Astyanax mexicanus is a freshwater fish species with blind cave morphs and sighted surface morphs. Like other troglodytic species, independently evolved cave-dwelling A. mexicanus populations share several stereotypic phenotypes, including the expansion of certain sensory systems, as well as the loss of eyes and pigmentation. Here, we assess the extent to which there is also parallelism in craniofacial development across cave populations. Since multiple forces may be acting upon variation in the A. mexicanus system, including phylogenetic history, selection, and developmental constraint, several outcomes are possible. For example, eye regression may have triggered a conserved series of compensatory developmental events, in which case we would expect to observe highly similar craniofacial phenotypes across cave populations. Selection for cave-specific foraging may also lead to the evolution of a conserved craniofacial phenotype, especially in regions of the head directly associated with feeding. Alternatively, in the absence of a common axis of selection or strong developmental constraints, craniofacial shape may evolve under neutral processes such as gene flow, drift, and bottlenecking, in which case patterns of variation should reflect the evolutionary history of A. mexicanus. Our results found that cave-adapted populations do share certain anatomical features; however, they generally did not support the hypothesis of a conserved craniofacial phenotype across caves, as nearly every pairwise comparison was statistically significant, with greater effect sizes noted between more distantly related cave populations with little gene flow. A similar pattern was observed for developmental trajectories. We also found that morphological disparity was lower among all three cave populations versus surface fish, suggesting eye loss is not associated with increased variation, which would be consistent with a release of developmental constraint. Instead, this pattern reflects the relatively low genetic diversity within cave populations. Finally, magnitudes of craniofacial integration were found to be similar among all groups, meaning that coordinated development among anatomical units is robust to eye loss in A. mexicanus. We conclude that, in contrast to many conserved phenotypes across cave populations, global craniofacial shape is more variable, and patterns of shape variation are more in line with population structure than developmental architecture or selection.

Astyanax mexicanus es una especie de pez de agua dulce con morfologías de cueva ciega y morfologías de superficie videntes. Al igual que otras especies trogloditas, las poblaciones de A. mexicanus que habitan en cavernas evolucionaron independientemente y comparten varios fenotipos estereotipados. Entre ellos, la clave es la expansión de ciertos sistemas sensoriales y la pérdida de pigmentación y ojos. Aquí, evaluaremos hasta qué punto existen ciertos paralelismos en el desarrollo craneofacial entre poblaciones de cavernas conevolucion independientemente. Es posible que múltiples factores estén presentes actuando sobre la variación en el sistema de A. mexicanus, lo que lleva a varios posibles resultados. Por ejemplo, la regresión ocular se pudo haber desencadenado con una serie conservada de eventos de desarrollo compensatorio, en cuyo caso esperaríamos observar fenotipos craneofaciales muy similares en todas las poblaciones de cavernas. Además, dadas las demandas metabólicas y estructurales del ojo, su ausencia puede constituir una liberación de restricciones, lo que lleva a una expansión de la variaciónes craneofacial, la observación de diferentes patrones de covariación en relación con los peces de superficie, o ambos. Alternativamente, la selección para buscar alimento en cuevas específicas junto con la pérdida de ojos pudo haber desencadenado una línea evolutiva hacia un fenotipo craneofacial conservado. La variación intra e interpoblacional refleja en la historia evolutiva de A. mexicanus y en fuerzas demográficas como el flujo, la deriva y los cuellos de botella de genes. Nuestros resultados no respaldan un fenotipo craneofacial conservado en todas las cuevas, ya que casi todas las comparaciones por pares fueron estadísticamente significativas. Sin embargo, las poblaciones adaptadas a cuevas comparten ciertas características anatómicas. También observamos que la disparidad morfológica fue menor entre las tres poblaciones de cuevas en comparación con los peces de la superficie, lo que sugiere que la pérdida de ojos no está asociada con una mayor variación. En cambio, este patrón refleja la diversidad genética relativamente baja en las cuevas en comparación con las poblaciones de la superficie. Las magnitudes de la integración craneofacial también fueron similares entre todos los grupos, lo que significa que el desarrollo coordinado entre unidades anatómicas es resistente a la pérdida ocular en A. mexicanus. Concluimos que, a diferencia de muchos fenotipos conservados en las poblaciones de cuevas, la forma craneofacial global es más variable y los patrones de variación de la forma están más en línea con la estructura de la población que con el desarrollo arquitectural.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interest.

Figures

Fig. 1
Fig. 1
Stage 3 cleared and double-stained Astyanax specimens are shown. Landmark (LM) schemes are illustrated on the Pachon individual at top (a, b), and surface fish at bottom (c, d). Landmarks are denoted as solid red dots, while curves along which semi-landmarks were placed are denoted as dashed white lines. In the ventral view, LM 1 depicts the mandibular–quadrate joint, LMs 2 and 3 define the anterior end of the hyoid, LM 4 is the hyoid–interhyal joint, LM 5 is the interhyal–hyomandibula joint, and LM 6 is the proximal end of the ventral most pectoral fin ray/pad (stage 1). Contralateral LMs were used to capture bilateral shape variation. In addition, we used nine semi-landmarks between the left and right mandibular LMs. In the lateral view, LMs 1 and 2 depict the dorsal and ventral-most ends of the cleithrum, LMs 3 and 4 define the posterior and anterior-most ends of the hyoid, LM 5 is the ventral tip of the retroarticular process, LM 6 is the mandibular–quadrate joint, LM 7 is where the coronoid meets the articular bone, LM 8 is the ventral edge of the distal end of the mandible, LM 9 is the tip of the premaxilla/upper jaw (stage 1), and LM 10 is the posterior end of the parietal bone (in stage 1 and 2 animals this landmark was placed at the posterior end of the dorsal cranium). In this view, we also used three semi-landmarks between LMs 9 and 10 to assess variation in cranial profile. Scale bars equal 500 μm in all panels.
Fig. 2
Fig. 2
Principal component analysis (PCA) and associated deformation grids for the ventral landmark dataset. Data for stage 1 (a, b), stage 2 (c, d), and stage 3 (e, f) are shown separately. For each stage, the percent variation explained by each axis is provided, and the shape space is overlain by colored convex hulls for each locality. Deformation grids represent the predicted shape at minimum and maximum values along each axis as compared to mean shape. Anterior is to the left, posterior is to the right.
Fig. 3
Fig. 3
Principal component analysis (PCA) and associated deformation grids for the lateral landmark dataset. Data for stage 1 (a, b), stage 2 (c, d), and stage 3 (e, f) are presented separately. For each stage, the percent variation explained by each axis is provided, and shape space is overlain by colored convex hulls for each locality. Deformation grids represent the predicted shape at minimum and maximum values along each axis as compared to mean shape. In b and d, anterior is facing the top left corner, while posterior is bottom right. In f, anterior is bottom left, while posterior is top right.
Fig. 4
Fig. 4
Principal component analysis (PCA) and associated deformation grids for the trajectory analysis in the ventral view. All population: stages are depicted in (a), and the percent variation explained by each component is provided. Corresponding deformation grids are illustrated in (b) as minimum and maximum values relative to mean shape. The anterior–posterior axis runs left to right. For ease of interpretation, each population is also shown separately (c–f). Circles represent individual data points, while triangles represent group means. Populations are denoted by different colors, and increasingly older fish are represented by darker hues.
Fig. 5
Fig. 5
Principal component analysis (PCA) and associated deformation grids for the trajectory analysis in the lateral view. All population: stages are depicted in (a), and the percent variation explained by each axis is provided. Corresponding deformation grids are illustrated in (b) as minimum and maximum values relative to mean shape. Here, the anterior–posterior axis runs top left to bottom right. For ease of interpretation, each population is also shown separately (c–f). Circles represent individual data points, while triangles are group means. Populations are denoted by different colors, with increasingly older fish represented by darker hues.

Similar articles

References

    1. Adams D, Collyer ML, Kaliontzopoulou A. 2018. Geomorph: software for geometric morphometric analysis. R package version 3.0.6 (https://cran.r-project.org/package=geomorph).
    1. Agosto ER, Auerbach BM. 2022. Morphological integration and evolutionary potential of the primate shoulder: variation among taxa and implications for genetic covariances with the basicranium, pelvis, and arm. J Hum Evol 169:103221. 10.1016/j.jhevol.2022.103221 - DOI - PubMed
    1. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MDet al. . 2016. The origin and evolution of cell types. Nat Rev Genet 17:744–57. 10.1038/nrg.2016.127 - DOI - PubMed
    1. Aristotle . 1910. De Generatione Animalium by ArthurPlatt M.A.Professor of Greek in University College London Late Fellow of Trinity College Cambridge. Oxford, England: Clarendon Press.
    1. Armbruster WS, Pélabon C, Bolstad GH, Hansen TF. 2014. Integrated phenotypes: understanding trait covariation in plants and animals. Philos Trans R Soc Lond B Biol Sci 369:20130245. - PMC - PubMed

LinkOut - more resources