Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 15;678(Pt A):1060-1074.
doi: 10.1016/j.jcis.2024.08.234. Epub 2024 Aug 31.

Redox homeostasis disruptors enhanced cuproptosis effect for synergistic photothermal/chemodynamic therapy

Affiliations

Redox homeostasis disruptors enhanced cuproptosis effect for synergistic photothermal/chemodynamic therapy

Zhen Liu et al. J Colloid Interface Sci. .

Erratum in

Abstract

The combination of chemodynamic therapy (CDT) with photothermal therapy (PTT) is a promising approach to enhance antitumor efficacy of chemotherapeutics. In this paper, we developed novel copper-chelated polydopamine (PDA) nanoparticles (NPs) functionalized with hyaluronic acid (HA) (Cu-PDA-HA NPs) to induce apoptosis and cuproptosis-induced cell death, synergistically combining PTT and CDT. Experimental results revealed that Cu-PDA-HA NPs can respond to excessive glutathione (GSH) and hydrogen peroxide (H2O2) in the tumor microenvironment (TME), which will enable their specific degradation, thereby leading to efficient accumulation of Cu2+ within tumor cells. The released Cu2+ ions were reduced by GSH to generate Cu+, which catalyzed in situ Fenton-like reactions to produce cytotoxic hydroxyl radicals (·OH), disrupting cellular redox homeostasis and promoting apoptosis-related CDT. Meanwhile, the photothermal effect of the Cu-PDA-HA NPs could enhance oxidative stress within the tumor by elevating the temperature and subsequent ·OH production. The enhanced oxidative stress made tumor cells more vulnerable to cuproptosis-induced toxicity. Furthermore, in vivo experiments demonstrated that Cu-PDA-HA NPs can still undergo a temperature increase of 18.9°C following 808 nm near-infrared irradiation (1.0 W/cm2, 5 min). Meanwhile, Cu-PDA-HA NPs were able to induce oligomerization of dihydrolipoamide S-acetyltransferase (DLAT) and down-regulate Fe-S cluster proteins such as ferredoxin (FDX1), thereby activating cuproptosis. Therefore, this study provides a novel approach for designing multifunctional nanoparticles with on-demand Cu2+ release and offers a fresh perspective for exploring synergistic therapeutic strategies involving CDT/PTT/apoptosis/cuproptosis.

Keywords: Copper-chelated polydopamine; Cuproptosis; Hyaluronic acid; Synergistic therapy.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

MeSH terms

LinkOut - more resources