Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Dec 1:189:364-388.
doi: 10.1016/j.wasman.2024.08.036. Epub 2024 Sep 4.

Upcycling biowaste into advanced carbon materials via low-temperature plasma hybrid system: applications, mechanisms, strategies and future prospects

Affiliations
Review

Upcycling biowaste into advanced carbon materials via low-temperature plasma hybrid system: applications, mechanisms, strategies and future prospects

Fanghua Li et al. Waste Manag. .

Abstract

This review focuses on the recent advances in the sustainable conversion of biowaste to valuable carbonaceous materials. This study summarizes the significant progress in biowaste-derived carbon materials (BCMs) via a plasma hybrid system. This includes systematic studies like AI-based multi-coupling systems, promising synthesis strategies from an economic point of view, and their potential applications towards energy, environment, and biomedicine. Plasma modified BCM has a new transition lattice phase and exhibits high resilience, while fabrication and formation mechanisms of BCMs are reviewed in plasma hybrid system. A unique 2D structure can be designed and formulated from the biowaste with fascinating physicochemical properties like high surface area, unique defect sites, and excellent conductivity. The structure of BCMs offers various activated sites for element doping and it shows satisfactory adsorption capability, and dynamic performance in the field of electrochemistry. In recent years, many studies have been reported on the biowaste conversion into valuable materials for various applications. Synthesis methods are an indispensable factor that directly affects the structure and properties of BCMs. Therefore, it is imperative to review the facile synthesis methods and the mechanisms behind the formation of BCMs derived from the low-temperature plasma hybrid system, which is the necessity to obtain BCMs having desirable structure and properties by choosing a suitable synthesis process. Advanced carbon-neutral materials could be widely synthesized as catalysts for application in environmental remediation, energy conversion and storage, and biotechnology.

Keywords: AI-based multi-coupling system; Biowaste recycling; Carbon-neutral materials; Plasma hybrid system; Synthesis mechanism.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

MeSH terms

LinkOut - more resources