Obesity: exploring its connection to brain function through genetic and genomic perspectives
- PMID: 39237720
- PMCID: PMC11746128
- DOI: 10.1038/s41380-024-02737-9
Obesity: exploring its connection to brain function through genetic and genomic perspectives
Abstract
Obesity represents an escalating global health burden with profound medical and economic impacts. The conventional perspective on obesity revolves around its classification as a "pure" metabolic disorder, marked by an imbalance between calorie consumption and energy expenditure. Present knowledge, however, recognizes the intricate interaction of rare or frequent genetic factors that favor the development of obesity, together with the emergence of neurodevelopmental and mental abnormalities, phenotypes that are modulated by environmental factors such as lifestyle. Thirty years of human genetic research has unveiled >20 genes, causing severe early-onset monogenic obesity and ~1000 loci associated with common polygenic obesity, most of those expressed in the brain, depicting obesity as a neurological and mental condition. Therefore, obesity's association with brain function should be better recognized. In this context, this review seeks to broaden the current perspective by elucidating the genetic determinants that contribute to both obesity and neurodevelopmental and mental dysfunctions. We conduct a detailed examination of recent genetic findings, correlating them with clinical and behavioral phenotypes associated with obesity. This includes how polygenic obesity, influenced by a myriad of genetic variants, impacts brain regions associated with addiction and reward, differentiating it from monogenic forms. The continuum between non-syndromic and syndromic monogenic obesity, with evidence from neurodevelopmental and cognitive assessments, is also addressed. Current therapeutic approaches that target these genetic mechanisms, yielding improved clinical outcomes and cognitive advantages, are discussed. To sum up, this review corroborates the genetic underpinnings of obesity, affirming its classification as a neurological disorder that may have broader implications for neurodevelopmental and mental conditions. It highlights the promising intersection of genetics, genomics, and neurobiology as a foundation for developing tailored medical approaches to treat obesity and its related neurological aspects.
© 2024. The Author(s).
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Figures
References
-
- World Obesity Atlas. World Obesity Atlas 2023. London WC2A 1EN: World Obesity Atlas; 2023.
-
- Wardle J, Carnell S, Haworth CM, Plomin R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87:398–404. - PubMed
-
- Silventoinen K, Jelenkovic A, Sund R, Hur Y-M, Yokoyama Y, Honda C, et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study. Am J Clin Nutr. 2016;104:371–9. - PMC - PubMed
-
- El-Sayed Moustafa JS, Froguel P. From obesity genetics to the future of personalized obesity therapy. Nat Rev Endocrinol. 2013;9:402–13. - PubMed
-
- Saeed S, Arslan M, Froguel P. Genetics of obesity in consanguineous populations: toward precision medicine and the discovery of novel obesity genes. Obesity. 2018;26:474–84. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
