Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun;131(6):894-901.
doi: 10.1164/arrd.1985.131.6.894.

Respiratory heat loss is not the sole stimulus for bronchoconstriction induced by isocapnic hyperpnea with dry air

Respiratory heat loss is not the sole stimulus for bronchoconstriction induced by isocapnic hyperpnea with dry air

W L Eschenbacher et al. Am Rev Respir Dis. 1985 Jun.

Abstract

It is uncertain if respiratory heat loss or respiratory water loss is the stimulus for bronchoconstriction induced by isocapnic hyperpnea or exercise with dry air in subjects with asthma. We partially separated these 2 stimuli by having 18 subjects with asthma breathe dry air (0 mg/L water content) at increasing ventilations by isocapnic hyperpnea while we measured the increase in specific airway resistance (SRaw). The study was divided into 2 phases. In Phase 1, we used an apparatus with a single respiratory valve and evaluated the subjects' responses at 3 different inspired temperatures (-8.4, 20.5, and 39.4 degrees C). Seven of the subjects had esophageal catheters with 2 thermocouples in place to measure retrocardiac and retrotracheal temperatures. In this phase, we found that there were no significant differences in the ventilation required to cause a 100% increase in SRaw among the 3 different inspired temperatures (48.4 L/min, cold; 47.5 L/min, room temperature; 44.2 L/min, hot), even though the retrotracheal temperature fell more when the subjects breathed cold air at 40 L/min (2.1 degrees C) than when they breathed hot air (1.2 degrees C), suggesting greater airway cooling with the cold air. In Phase 2, in order to accurately measure inspired and exhaled temperatures and exhaled water content, we used 2 separate systems for delivering the inspired air and collecting the exhaled air at 2 different inspired temperatures (-21.4 and 38.9 degrees C). Again, we found that there was no significant difference in the ventilation required to cause a 100% increase in SRaw between the 2 different inspired temperatures (28.3 L/min, cold; 33.6 L/min, hot). When the subjects inhaled cold air, exhaled temperature was warmer than previously reported.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources