Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 Dec:181:111714.
doi: 10.1016/j.ejrad.2024.111714. Epub 2024 Sep 1.

Machine learning value in the diagnosis of vertebral fractures: A systematic review and meta-analysis

Affiliations
Free article
Meta-Analysis

Machine learning value in the diagnosis of vertebral fractures: A systematic review and meta-analysis

Yue Li et al. Eur J Radiol. 2024 Dec.
Free article

Abstract

Purpose: To evaluate the diagnostic accuracy of machine learning (ML) in detecting vertebral fractures, considering varying fracture classifications, patient populations, and imaging approaches.

Method: A systematic review and meta-analysis were conducted by searching PubMed, Embase, Cochrane Library, and Web of Science up to December 31, 2023, for studies using ML for vertebral fracture diagnosis. Bias risk was assessed using QUADAS-2. A bivariate mixed-effects model was used for the meta-analysis. Meta-analyses were performed according to five task types (vertebral fractures, osteoporotic vertebral fractures, differentiation of benign and malignant vertebral fractures, differentiation of acute and chronic vertebral fractures, and prediction of vertebral fractures). Subgroup analyses were conducted by different ML models (including ML and DL) and modeling methods (including CT, X-ray, MRI, and clinical features).

Results: Eighty-one studies were included. ML demonstrated a diagnostic sensitivity of 0.91 and specificity of 0.95 for vertebral fractures. Subgroup analysis showed that DL (SROC 0.98) and CT (SROC 0.98) performed best overall. For osteoporotic fractures, ML showed a sensitivity of 0.93 and specificity of 0.96, with DL (SROC 0.99) and X-ray (SROC 0.99) performing better. For differentiating benign from malignant fractures, ML achieved a sensitivity of 0.92 and specificity of 0.93, with DL (SROC 0.96) and MRI (SROC 0.97) performing best. For differentiating acute from chronic vertebral fractures, ML showed a sensitivity of 0.92 and specificity of 0.93, with ML (SROC 0.96) and CT (SROC 0.97) performing best. For predicting vertebral fractures, ML had a sensitivity of 0.76 and specificity of 0.87, with ML (SROC 0.80) and clinical features (SROC 0.86) performing better.

Conclusions: ML, especially DL models applied to CT, MRI, and X-ray, shows high diagnostic accuracy for vertebral fractures. ML also effectively predicts osteoporotic vertebral fractures, aiding in tailored prevention strategies. Further research and validation are required to confirm ML's clinical efficacy.

Keywords: Diagnosis; Machine learning; Meta-analysis; Vertebral fractures.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

LinkOut - more resources