Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug 26;15(37):15205-15211.
doi: 10.1039/d4sc04413d. Online ahead of print.

Nitrogen-to-functionalized carbon atom transmutation of pyridine

Affiliations

Nitrogen-to-functionalized carbon atom transmutation of pyridine

Fu-Peng Wu et al. Chem Sci. .

Abstract

The targeted and selective replacement of a single atom in an aromatic system represents a powerful strategy for the rapid interconversion of molecular scaffolds. Herein, we report a pyridine-to-benzene transformation via nitrogen-to-carbon skeletal editing. This approach proceeds via a sequence of pyridine ring-opening, imine hydrolysis, olefination, electrocyclization, and aromatization to achieve the desired transmutation. The most notable features of this transformation are the ability to directly install a wide variety of versatile functional groups in the benzene scaffolding, including ester, ketone, amide, nitrile, and phosphate ester fragments, as well as the inclusion of meta-substituted pyridines which have thus far been elusive for related strategies.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (A) Effect of nitrogen-to-carbon substitution in drug molecules. (B) Skeletal editing via single-atom (N/C) transmutation. (C) Previous work on pyridine to benzene skeletal editing. (D) This work: nitrogen-to-functionalized carbon atom transmutation of pyridine.
Scheme 1
Scheme 1. Optimization of olefination and ring closure.
Fig. 2
Fig. 2. Scope of the pyridines. Standard conditions: (i) pyridine (0.2 mmol), Tf2O (0.24 mmol), Bn2NH (0.24 mmol), KOtBu (0.24 mmol), and EtOAc (3 mL) at −78 °C to room temperature for 1.5 h. (ii) NaOtBu (0.22 mmol), H2O (0.22 mmol), heated to 120 °C for 15 min, then P2 (0.4 mmol), HCl (0.72 mmol, 4 M in dioxane) and THF (3 mL), heated to 120 °C for 4 h. Isolated yields given. aYield determined by 1H NMR.
Fig. 3
Fig. 3. Scope of the olefination partners. Standard conditions: (i) 3-phenyl pyridine (0.2 mmol), Tf2O (0.24 mmol), Bn2NH (0.24 mmol), KOtBu (0.24 mmol), and EtOAc (3 mL) at −78 °C to room temperature for 1.5 h. (ii) NaOtBu (0.22 mmol), H2O (0.22 mmol), heated to 120 °C for 15 min, then phosphine reagent (0.4 mmol), HCl (0.72 mmol, 4 M in dioxane) and THF (3 mL), heated to 120 °C for 4 h. Isolated yields given. aYield determined by 1H NMR.
Fig. 4
Fig. 4. Computational studies on the impact of (a) acid additive on the barrier for isomerization-electrocyclization and (b) para- vs. meta substituents on the barriers for isomerization. All structures were calculated at the UB3LYP-D3/aug-CC-PVTZ-CPCM(THF)//UB3LYP-d3/def2-svp-CPCM(THF) level of theory. Relative (ΔGrel) energies are in kcal mol−1.

References

    1. Jurczyk J. Woo J. Kim S. F. Dherange B. D. Sarpong R. Levin M. D. Nat. Synth. 2022;1:352–364. doi: 10.1038/s44160-022-00052-1. - DOI - PMC - PubMed
    2. Hui C. Wang Z. Wang S. Xu C. Org. Chem. Front. 2022;9:1451–1457. doi: 10.1039/D2QO00043A. - DOI
    3. Joynson B. W. Ball L. T. Helv. Chim. Acta. 2023;106:e202200182. doi: 10.1002/hlca.202200182. - DOI
    4. Liu Z. Sivaguru P. Ning Y. Wu Y. Bi X. Chem.–Eur. J. 2023;29:e202301227. doi: 10.1002/chem.202301227. - DOI - PubMed
    1. Meanwell N. A. J. Med. Chem. 2011;54:2529–2591. doi: 10.1021/jm1013693. - DOI - PubMed
    2. St. Jean Jr D. J. Fotsch C. J. Med. Chem. 2012;55:6002–6020. doi: 10.1021/jm300343m. - DOI - PubMed
    3. Hu Y. Stumpfe D. Bajorath J. J. Med. Chem. 2017;60:1238–1246. doi: 10.1021/acs.jmedchem.6b01437. - DOI - PubMed
    1. Yin Y. Zheng K. Eid N. Howard S. Jeong J. H. Yi F. Guo J. Park C. M. Bibian M. Wu W. Hernandez P. Park H. Wu Y. Luo J. L. LoGrasso P. V. Feng Y. J. Med. Chem. 2015;58:1846–1861. doi: 10.1021/jm501680m. - DOI - PMC - PubMed
    1. Mermer A. Keles T. Sirin Y. Bioorg. Chem. 2021;114:105076. doi: 10.1016/j.bioorg.2021.105076. - DOI - PubMed
    1. Qiu X. Sang Y. Wu H. Xue X. S. Yan Z. Wang Y. Cheng Z. Wang X. Tan H. Song S. Zhang G. Zhang X. Houk K. N. Jiao N. Nature. 2021;597:64–69. doi: 10.1038/s41586-021-03801-y. - DOI - PubMed
    2. Reisenbauer J. C. Green O. Franchino A. Finkelstein P. Morandi B. Science. 2022;377:1104–1109. doi: 10.1126/science.add1383. - DOI - PubMed
    3. Wang J. Lu H. He Y. Jing C. Wei H. J. Am. Chem. Soc. 2022;144:22433–22439. doi: 10.1021/jacs.2c10570. - DOI - PubMed
    4. Bartholomew G. L. Carpaneto F. Sarpong R. J. Am. Chem. Soc. 2022;144:22309–22315. doi: 10.1021/jacs.2c10746. - DOI - PMC - PubMed
    5. Wang H. Shao H. Das A. Dutta S. Chan H. T. Daniliuc C. Houk K. N. Glorius F. Science. 2023;381:75–81. doi: 10.1126/science.adh9737. - DOI - PubMed
    6. Wright B. A. Matviitsuk A. Black M. J. Garcia-Reynaga P. Hanna L. E. Herrmann A. T. Ameriks M. K. Sarpong R. Lebold T. P. J. Am. Chem. Soc. 2023;145:10960–10966. doi: 10.1021/jacs.3c02616. - DOI - PMC - PubMed
    7. Joynson B. W. Cumming G. R. Ball L. T. Angew. Chem., Int. Ed. 2023;62:e202305081. doi: 10.1002/anie.202305081. - DOI - PMC - PubMed
    8. Woo J. Stein C. Christian A. H. Levin M. D. Nature. 2023;623:77–82. doi: 10.1038/s41586-023-06613-4. - DOI - PMC - PubMed
    9. Finkelstein P. Reisenbauer J. C. Botlik B. B. Green O. Florin A. Morandi B. Chem. Sci. 2023;14:2954–2959. doi: 10.1039/D2SC06952K. - DOI - PMC - PubMed
    10. Li H. Li N. Wu J. Yu T. Zhang R. Xu L. P. Wei H. J. Am. Chem. Soc. 2023;144:22433–22439.
    11. Boudry E. Bourdreux F. Marrot J. Moreau X. Ghiazza C. J. Am. Chem. Soc. 2024;146:2845–2854. doi: 10.1021/jacs.3c14467. - DOI - PubMed
    12. Nguyen H. M. H. Thomas D. C. Hart M. A. Steenback K. R. Levy J. N. McNally A. J. Am. Chem. Soc. 2024;146:2944–2949. doi: 10.1021/jacs.3c12445. - DOI - PMC - PubMed
    13. Bartholomew G. L. Kraus S. L. Karas L. J. Carpaneto F. Bennett R. Sigman M. S. Yeung C. S. Sarpong R. J. Am. Chem. Soc. 2024;146:2950–2958. doi: 10.1021/jacs.3c11515. - DOI - PMC - PubMed
    14. Tolchin Z. A. Smith J. M. J. Am. Chem. Soc. 2024;146:2939–2943. doi: 10.1021/jacs.3c11618. - DOI - PMC - PubMed

LinkOut - more resources