Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)
- PMID: 39247549
- PMCID: PMC11380842
- DOI: 10.7717/peerj.17843
Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)
Abstract
Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
Keywords: Detoxification systems; Gene silencing; Multi-omics; Pesticide resistance; Systems biology; Whitefly.
© 2024 Rosli et al.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures




References
-
- Abubakar M, Koul B, Chandrashekar K, Raut A, Yadav D. Whitefly (Bemisia tabaci) management (WFM) strategies for sustainable agriculture: a review. Agriculture. 2022;12(9):1317. doi: 10.3390/agriculture12091317. - DOI
-
- Aizat WM, Goh HH, Baharum SN. Omics applications for systems biology. Berlin, Germany: Springer; 2018.
-
- Aizat WM, Hassan M. Proteomics in systems biology. In: Aizat WM, Goh HH, Baharum SN, editors. Omics Applications for Systems Biology. Cham: Springer International Publishing; 2018. pp. 31–49.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials