Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun;5(6):1483-9.
doi: 10.1523/JNEUROSCI.05-06-01483.1985.

The neurotoxicity of excitatory amino acids is produced by passive chloride influx

The neurotoxicity of excitatory amino acids is produced by passive chloride influx

S M Rothman. J Neurosci. 1985 Jun.

Abstract

In the 15 years since the neurotoxic properties of glutamate and related amino acids were first described, there has been no thoroughly convincing explanation of the pathophysiology of excitatory amino acid-induced neuronal death. These substances depolarize central neurons, increase the frequency of neuronal discharge, and augment synaptic activity, leading to the suggestion that one or more of these properties may in some way be responsible for toxicity. More recently, an excessive calcium influx triggered by amino acids has been implicated in this process. As isolation of the different factors potentially involved in amino acid neurotoxicity is virtually impossible in vivo, dispersed hippocampal cultures were used to define the pathophysiology of this process in vitro. The toxicity of glutamate, N-methyl-D-aspartate, and kainate was unaffected when calcium was deleted and tetrodotoxin added to the balanced salt solution bathing the cultures. In parallel experiments, the calcium ionophore A23187 was not toxic in the presence of calcium. These experiments failed to confirm a role for neuronal activity or calcium influx in this process. However, when depolarization was blocked by deleting sodium from the control salt solution, neither glutamate, N-methyl-D-aspartate, nor kainate produced obvious changes. Alternately, when passive chloride influx was prevented by largely deleting chloride from the bath, the cells were also unchanged by the amino acids. Further experiments showed that depolarization produced by high external potassium concentrations or veratridine was also toxic, but only in the presence of external chloride. These experiments suggest that the pathophysiology of amino acid neurotoxicity may be rather straightforward.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types