Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov;67(11):2568-2584.
doi: 10.1007/s00125-024-06260-y. Epub 2024 Sep 9.

An antifibrotic compound that ameliorates hyperglycaemia and fat accumulation in cell and HFD mouse models

Affiliations

An antifibrotic compound that ameliorates hyperglycaemia and fat accumulation in cell and HFD mouse models

Tsugumasa Toma et al. Diabetologia. 2024 Nov.

Abstract

Aims/hypothesis: Appropriate management of blood glucose levels and the prevention of complications are important in the treatment of diabetes. We have previously reported on a compound named HPH-15 that is not only antifibrotic but also AMP-activated protein kinase (AMPK)-activating. In this study, we evaluated whether HPH-15 is useful as a therapeutic medication for diabetes.

Methods: We examined the effects of HPH-15 on AMPK activation, glucose uptake, fat accumulation and lactic acid production in L6-GLUT4, HepG2 and 3T3-L1 cells, as a model of muscle, liver and fat tissue, respectively. Additionally, we investigated the glucose-lowering, fat-accumulation-suppressing, antifibrotic and AMPK-activating effect of HPH-15 in mice fed a high-fat diet (HFD).

Results: HPH-15 at a concentration of 10 µmol/l increased AMPK activation, glucose uptake and membrane translocation of GLUT4 in each cell model to the same extent as metformin at 2 mmol/l. The production of lactic acid (which causes lactic acidosis) in HPH-15-treated cells was equal to or less than that observed in metformin-treated cells. In HFD-fed mice, HPH-15 lowered blood glucose from 11.1±0.3 mmol/l to 8.2±0.4 mmol/l (10 mg/kg) and 7.9±0.4 mmol/l (100 mg/kg) and improved insulin resistance. The HPH-15 (10 mg/kg) group showed the same level of AMPK activation as the metformin (300 mg/kg) group in all organs. The HPH-15-treated HFD-fed mice also showed suppression of fat accumulation and fibrosis in the liver and fat tissue; these effects were more significant than those obtained with metformin. Mice treated with high doses of HPH-15 also exhibited a 44% reduction in subcutaneous fat.

Conclusions/interpretation: HPH-15 activated AMPK at lower concentrations than metformin in vitro and in vivo and improved blood glucose levels and insulin resistance in vivo. In addition, HPH-15 was more effective than metformin at ameliorating fatty liver and adipocyte hypertrophy in HFD-fed mice. HPH-15 could be effective in preventing fatty liver, a common complication in diabetic individuals. Additionally, in contrast to metformin, high doses of HPH-15 reduced subcutaneous fat in HFD-fed mice. Presumably, HPH-15 has a stronger inhibitory effect on fat accumulation and fibrosis than metformin, accounting for the reduction of subcutaneous fat. Therefore, HPH-15 is potentially a glucose-lowering medication that can lower blood glucose, inhibit fat accumulation and ameliorate liver fibrosis.

Keywords: AMP-activated protein kinase; Diabetes; Fatty liver; GLUT4; Glucose transporter type 4; Obesity; Subcutaneous fat.

PubMed Disclaimer

References

    1. Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377–390. https://doi.org/10.1038/s41581-020-0278-5 - DOI - PubMed - PMC
    1. Chobot A, Górowska-Kowolik K, Sokołowska M, Jarosz-Chobot P (2018) Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab Res Rev 34(7):e3042. https://doi.org/10.1002/dmrr.3042 - DOI - PubMed - PMC
    1. Lega IC, Lipscombe LL (2020) Review: diabetes, obesity, and cancer-pathophysiology and clinical implications. Endocr Rev 41(1):33–52. https://doi.org/10.1210/endrev/bnz014 - DOI
    1. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188. https://doi.org/10.1152/physrev.00045.2011 - DOI - PubMed
    1. Reaven G (2002) Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 106(3):286–288. https://doi.org/10.1161/01.cir.0000019884.36724.d9 - DOI - PubMed

MeSH terms

LinkOut - more resources