Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 10;67(19):17608-17628.
doi: 10.1021/acs.jmedchem.4c01597. Epub 2024 Sep 11.

Discovery of N-Aryl- N'-[4-(aryloxy)cyclohexyl]squaramide-Based Inhibitors of LXR/SREBP-1c Signaling Pathway Ameliorating Steatotic Liver Disease: Navigating the Role of SIRT6 Activation

Affiliations

Discovery of N-Aryl- N'-[4-(aryloxy)cyclohexyl]squaramide-Based Inhibitors of LXR/SREBP-1c Signaling Pathway Ameliorating Steatotic Liver Disease: Navigating the Role of SIRT6 Activation

Long Huu Nguyen et al. J Med Chem. .

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily attributed to the abnormal upregulation of hepatic lipogenesis, which is especially caused by the overactivation of the liver X receptor/sterol regulatory element-binding protein-1c (LXR/SREBP-1c) pathway in hepatocytes. In this study, we report the rational design and synthesis of a novel series of squaramides via bioisosteric replacement, which was evaluated for its inhibitory activity on the LXR/SREBP-1c pathway using dual cell-based assays. Compound 31 was found to significantly downregulate LXR, SREBP-1c, and their target genes associated with lipogenesis. Further investigation revealed that compound 31 may indirectly inhibit the LXR/SREBP-1c pathway by activating the upstream regulator sirtuin 6 (SIRT6). Encouragingly, compound 31 substantially attenuated lipid accumulation in HepG2 cells and in the liver of high-fat-diet-fed mice. These findings suggest that compound 31 holds promise as a candidate for the development of treatments for MASLD and other lipid metabolism-related diseases.

PubMed Disclaimer