Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov;52(11):1348-1353.
doi: 10.1016/j.jcms.2024.03.007. Epub 2024 Mar 13.

Fully digital occlusion planning in orthognathic surgery - A crossover study

Affiliations

Fully digital occlusion planning in orthognathic surgery - A crossover study

Bogomil Sabev et al. J Craniomaxillofac Surg. 2024 Nov.

Abstract

Orthognathic surgery enables patients with severe jaw malocclusions to normalise their chewing function and, as such, to improve their quality of life. Over the last few years, digitalisation has been set in motion by intraoral scanners and the improvement of planning software in the field of oral and maxillofacial surgery. Previous studies based on plaster cast models showed that the virtual occlusion based on digitally scanned models can be comparable to conventional methods. This retrospective crossover study aimed to prove that the virtual occlusion finding with the IPS CaseDesigner® (version 2.3.5.2, KLS Martin, Tuttlingen, Germany) is accurate enough to use intraoral scans exclusively.

Materials and methods: A total of 23 orthognathic surgery patients receiving an intraoral scan for their treatment were included in this study. Two experienced maxillofacial surgeons haptically performed the occlusion finding on three-dimensional (3D) stereolithographic models using the fully digital pathway. One surgeon repeated the procedure a second time to evaluate intra-observer variability. The study aimed to show the difference between these two planning methods by upholding the surgical accuracy of less than 2 mm in translation and 2° in rotation. The conventional haptic occlusion was set as a reference throughout the whole study. The data were tested with a one-sample Wilcoxon test for the fit into the surgical accuracy.

Results: The difference between the virtual and conventional groups was significantly smaller than the surgical accuracy (all p < 0.001). Both translational movements (anterior/posterior (median 0.51 mm [0.28, 0.88]), left/right (median 0.46 mm [0.20, 0.87]), cranial/caudal (median 0.37 mm [0.11, 0.69])) and rotations (Roll (median 0.71° [0.29, 1.35]), Pitch (median 0.72° [0.29, 1.44]), Yaw (median 1.09° [0.33, 1.60])) were in the range of surgical accuracy (2 mm/2°). The most significant differences were found in the anterior/posterior translation (median 0.51 mm [0.28, 0.88]) and the Yaw rotation (median 1.09° [0.33, 1.60]).

Conclusion: These results demonstrate that the entirely virtual workflow in orthognathic surgery, including intraoral scanning and the virtual semi-automatic occlusion finding, represents a reliable and state-of-the-art alternative to the conventional haptic method.

Keywords: Digital planning; Occlusal planning; Orthognathic surgery.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflicts of interest.

Similar articles

Cited by

LinkOut - more resources