Inherent symmetry and flexibility in hepatitis B virus subviral particles
- PMID: 39264996
- DOI: 10.1126/science.adp1453
Inherent symmetry and flexibility in hepatitis B virus subviral particles
Abstract
Chronic hepatitis B virus (HBV) infection poses a major global health challenge with massive morbidity and mortality. Despite a preventive vaccine, current treatments provide limited virus clearance, necessitating lifelong commitment. The HBV surface antigen (HBsAg) is crucial for diagnosis and prognosis, yet its high-resolution structure and assembly on the virus envelope remain elusive. Utilizing extensive datasets and advanced cryo-electron microscopy analysis, we present structural insights into HBsAg at a near-atomic resolution of 3.7 angstroms. HBsAg homodimers assemble into subviral particles with D2- and D4-like quasisymmetry, elucidating the dense-packing rules and structural adaptability of HBsAg. These findings provide insights into how HBsAg assembles into higher-order filaments and interacts with the capsid to form virions.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
