Microplastics and PFAS air-water interaction and deposition
- PMID: 39277013
- DOI: 10.1016/j.scitotenv.2024.176247
Microplastics and PFAS air-water interaction and deposition
Abstract
Although microplastics (MPs) and per- and polyfluoroalkyl substances (PFAS) have received tremendous attention separately, understanding their ubiquitous presence in the environment, persistence and toxicity requires comprehensive study of the fate and transport of co-existing MPs and PFAS. MPs may have large sorption capacity and can serve as vectors for PFAS to undergo long-range transport in water. Atmospheric deposition of both PFAS and MPs has been reported in urban, rural, and remote areas. This review identifies types and levels of PFAS and MPs in air, their interactions, and environmental factors contributing to their air-water deposition. MPs in combination with PFAS may carry combined toxicity and pose elevated risks to ecosystems and human health. Our review shows that air-water deposition of MPs and PFAS can be governed by environmental factors including precipitation, humidity, UV, wind, and particulate matter levels in the air. Increasing humidity may increase MP particle size due to hygroscopic growth, which affects its distribution and deposition rate. Humidity has been observed to have both positive and negative impacts on PFAS partitioning onto MPs. More attention should be paid to MPs and PFAS co-occurrence when addressing their transport behavior in air and deposition to aquatic systems.
Keywords: Air-water deposition; Atmospheric transport; Environmental factors; Microplastics; Per- and polyfluoroalkyl substances (PFAS).
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
LinkOut - more resources
Full Text Sources
