Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Aug;249(2 Pt 2):H351-7.
doi: 10.1152/ajpheart.1985.249.2.H351.

Multipoint pulmonary vascular pressure-cardiac output plots in conscious dogs

Multipoint pulmonary vascular pressure-cardiac output plots in conscious dogs

R F Lodato et al. Am J Physiol. 1985 Aug.

Abstract

To characterize quantitatively the relationships among pulmonary vascular pressures (P) and cardiac output (Q) in conscious dogs, multipoint plots of pulmonary arterial (PAP), pulmonary capillary wedge (PCWP), PAP - PCWP, and left atrial (LAP) pressure versus Q were generated by graded constriction of the thoracic inferior vena cava (IVC) to vary Q. Slopes and extrapolated pressure intercepts from linear regression fits to the P/Q plots were determined for three inspired oxygen tensions: normoxia, hyperoxia, and hypoxia. During normoxia (arterial Po2 87 +/- 1 Torr), the extrapolated pressure intercepts for PAP, PCWP, and PAP - PCWP were virtually 0 mmHg, and for LAP, substantially negative (-5.5 +/- 1.1 mmHg; P less than 0.01). Hyperoxia (Po2 365 +/- 28 Torr) had no effect on any of the P/Q plots. In contrast, hypoxia (Po2 51 +/- 1 Torr) significantly increased the intercepts (P less than 0.01) as well as the slopes (P less than 0.05) of PAP and PAP - PCWP versus Q, but produced only minor changes in PCWP and LAP versus Q. These hypoxia-induced changes in intercepts, perhaps related to changes in critical closing pressures, demonstrate the limitations of pulmonary vascular resistance calculations (quotient of pressure gradient and Q) in quantifying changes in pulmonary vasomotor tone. In this way, the IVC constriction technique provides a more complete description of P/Q relationships than that permitted by simple calculations of pulmonary vascular resistance. We conclude that this technique can be utilized to investigate the effects of other physiological and pharmacological interventions on pulmonary vasomotor tone in conscious dogs.

PubMed Disclaimer

Publication types

LinkOut - more resources