Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Oct:365:143340.
doi: 10.1016/j.chemosphere.2024.143340. Epub 2024 Sep 14.

Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives

Affiliations
Review

Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives

Divya Bhushan et al. Chemosphere. 2024 Oct.

Abstract

Green nanomaterials can mitigate ecological concerns by minimizing the impact of toxic contaminants on human and environmental health. Biosynthesis seems to be drawing unequivocal attention as the traditional methods of producing nanoparticles through chemical and physical routes are not sustainable. In order to utilize plant biomass, the current review outlines a sustainable method for producing non-toxic plant biomass-based nanoparticles and discusses their applications as well as recent trends involved in the remediation of contaminants, like organic/inorganic pollutants, pharmaceuticals, and radioactive pollutants from aquatic ecosystems. Plant biomass-based nanoparticles have been synthesized using various vegetal components, such as leaves, roots, flowers, stems, seeds, tuber, and bark, for applications in water purification. Phyto-mediated green nanoparticles are effectively utilized to treat contaminated water and reduce harmful substances. Effectiveness of adsorption has also been studied using variable parameters, e.g., pH, initial contaminant concentration, contact time, adsorbent dose, and temperature. Removal of environmental contaminants through reduction, photocatalytic degradation, and surface adsorption mechanisms, such as physical adsorption, precipitation, complexation, and ion exchange, primarily due to varying pH solutions and complex functional groups. In the case of organic pollutants, most of the contaminants have been treated by catalytic reduction and photodegradation involving the formation of NaBH4, H2O2, or both. Whereas electrostatic interaction, metal complexation, H-bonding, π- π associations, and chelation along with reduction have played a major role in the adsorption of heavy metals, pharmaceuticals, radioactive, and other inorganic pollutants. This review also highlights several challenges, like particle size, toxicity, stability, functional groups, cost of nanoparticle production, nanomaterial dynamics, and biological interactions, along with renewability and recycling of nanoparticles. Lastly, this review concluded that plant-biomass-based nanoparticles provide a sustainable, eco-friendly remediation method, utilizing the unique properties of nanomaterials and minimizing chemical synthesis risks.

Keywords: Biomass; Green synthesis; Nanomaterials; Remediation; Sustainable approach.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Substances

LinkOut - more resources