Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Sep 2:2024.08.31.610649.
doi: 10.1101/2024.08.31.610649.

Vascular network-inspired diffusible scaffolds for engineering functional neural organoids

Vascular network-inspired diffusible scaffolds for engineering functional neural organoids

Hongwei Cai et al. bioRxiv. .

Update in

Abstract

Organoids, three-dimensional in vitro organ-like tissue cultures derived from stem cells, show promising potential for developmental biology, drug discovery, and regenerative medicine. However, the function and phenotype of current organoids, especially neural organoids, are still limited by insufficient diffusion of oxygen, nutrients, metabolites, signaling molecules, and drugs. Herein, we present Vascular network-Inspired Diffusible (VID) scaffolds to fully recapture the benefits of physiological diffusion physics for generating functional organoids and phenotyping their drug response. In a proof-of-concept application, the VID scaffolds, 3D-printed meshed tubular channel networks, support the successful generation of engineered human midbrain organoids almost without necrosis and hypoxia in commonly used well-plates. Compared to conventional organoids, these engineered organoids develop with more physiologically relevant features and functions including midbrain-specific identity, oxygen metabolism, neuronal maturation, and network activity. Moreover, these engineered organoids also better recapitulate pharmacological responses, such as neural activity changes to fentanyl exposure, compared to conventional organoids with significant diffusion limits. Combining these unique scaffolds and engineered organoids may provide insights for organoid development and therapeutic innovation.

PubMed Disclaimer

Publication types

LinkOut - more resources