Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep;45(3):879-89.
doi: 10.1111/j.1471-4159.1985.tb04076.x.

Improved method for isolating synaptosomes from 11 regions of one rat brain: electron microscopic and biochemical characterization and use in the study of drug effects on nerve terminal gamma-aminobutyric acid in vivo

Improved method for isolating synaptosomes from 11 regions of one rat brain: electron microscopic and biochemical characterization and use in the study of drug effects on nerve terminal gamma-aminobutyric acid in vivo

W Löscher et al. J Neurochem. 1985 Sep.

Abstract

A procedure is described for the rapid preparation of nerve ending particles (synaptosomes) from 11 regions of one rat brain. The synaptosomal fractions have been characterized by electron microscopy and determination of four marker enzymes, i.e., glutamate decarboxylase (GAD), acetylcholinesterase, succinate dehydrogenase, and glycerol 3-phosphate dehydrogenase. Comparison with a much lengthier standard (Ficoll-sucrose) preparation showed that the synaptosomal yield of the new procedure was substantially better as judged by both morphological evaluation and protein recovery. The improved synaptosome preparation was used for determination of regional gamma-aminobutyric acid (GABA) levels in synaptosomal fractions. The postmortem increase in GABA level during removal and dissection of brain tissue and homogenization and fractionation procedures could be minimized by rapid processing of the tissue at low temperatures and inclusion of the GAD inhibitor 3-mercaptopropionic acid (3-MP; 1 mM) in the homogenizing medium. The addition of GABA (0.2 mM) to the homogenizing medium did not alter the GABA levels in the synaptosomes, indicating that no significant redistribution of GABA occurred during subcellular fractionation in sodium-free media. Synaptosomal GABA levels determined in the 11 rat brain areas showed the same regional distribution as the GABA-synthesizing enzyme GAD. On the basis of these findings, it was suggested that the synaptosome preparation could be used to evaluate the in vivo effects of drugs on nerve terminal GABA. Treatment of rats with a convulsant dose of 3-MP (50 mg/kg i.p.) 3 min before decapitation significantly lowered synaptosomal GABA levels in olfactory bulb, hippocampus, thalamus, tectum, and cerebellum. The 3-MP-induced seizures and reduction of GABA levels could be prevented by administration of valproic acid (200 mg/kg i.p.) 15 min before the 3-MP injection. The data indicate that the improved synaptosome preparation offers a convenient method of preparing highly purified synaptosomes from a large number of small tissue samples and can provide useful information on the in vivo effects of drugs on regional GABA levels in nerve terminals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources