Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 14;151(2):171-187.
doi: 10.1161/CIRCULATIONAHA.124.069329. Epub 2024 Sep 18.

Preventing Site-Specific Calpain Proteolysis of Junctophilin-2 Protects Against Stress-Induced Excitation-Contraction Uncoupling and Heart Failure Development

Affiliations

Preventing Site-Specific Calpain Proteolysis of Junctophilin-2 Protects Against Stress-Induced Excitation-Contraction Uncoupling and Heart Failure Development

Jinxi Wang et al. Circulation. .

Abstract

Background: Excitation-contraction (E-C) coupling processes become disrupted in heart failure (HF), resulting in abnormal Ca2+ homeostasis, maladaptive structural and transcriptional remodeling, and cardiac dysfunction. Junctophilin-2 (JP2) is an essential component of the E-C coupling apparatus but becomes site-specifically cleaved by calpain, leading to disruption of E-C coupling, plasmalemmal transverse tubule degeneration, abnormal Ca2+ homeostasis, and HF. However, it is not clear whether preventing site-specific calpain cleavage of JP2 is sufficient to protect the heart against stress-induced pathological cardiac remodeling in vivo.

Methods: Calpain-resistant JP2 knock-in mice (JP2CR) were generated by deleting the primary JP2 calpain cleavage site. Stress-dependent JP2 cleavage was assessed through in vitro cleavage assays and in isolated cardiomyocytes treated with 1 μmol/L isoproterenol by immunofluorescence. Cardiac outcomes were assessed in wild-type and JP2CR mice 5 weeks after transverse aortic constriction compared with sham surgery using echocardiography, histology, and RNA-sequencing methods. E-C coupling efficiency was measured by in situ confocal microscopy. E-C coupling proteins were evaluated by calpain assays and Western blotting. The effectiveness of adeno-associated virus gene therapy with JP2CR, JP2, or green fluorescent protein to slow HF progression was evaluated in mice with established cardiac dysfunction.

Results: JP2 proteolysis by calpain and in response to transverse aortic constriction and isoproterenol was blocked in JP2CR cardiomyocytes. JP2CR hearts are more resistant to pressure-overload stress, having significantly improved Ca2+ homeostasis and transverse tubule organization with significantly attenuated cardiac dysfunction, hypertrophy, lung edema, fibrosis, and gene expression changes relative to wild-type mice. JP2CR preserves the integrity of calpain-sensitive E-C coupling-related proteins, including ryanodine receptor 2, CaV1.2, and sarcoplasmic reticulum calcium ATPase 2a, by attenuating transverse aortic constriction-induced increases in calpain activity. Furthermore, JP2CR gene therapy after the onset of cardiac dysfunction was found to be effective at slowing the progression of HF and superior to wild-type JP2.

Conclusions: The data presented here demonstrate that preserving JP2-dependent E-C coupling by prohibiting the site-specific calpain cleavage of JP2 offers multifaceted beneficial effects, conferring cardiac protection against stress-induced proteolysis, hypertrophy, and HF. Our data also indicate that specifically targeting the primary calpain cleavage site of JP2 by gene therapy approaches holds great therapeutic potential as a novel precision medicine for treating HF.

Keywords: calpain; excitation contraction coupling; heart failure; junctophilin; proteolysis.

PubMed Disclaimer

Conflict of interest statement

Dr Song is an inventor on a patent regarding the use of JP2 fragments for the treatment of HF and other disease (WO2017214296A1). The other authors report no conflicts.

References

    1. Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ, Korchev YE, Harding SE, Gorelik J. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A. 2009;106:6854–6859. - PMC - PubMed
    1. Zhang HB, Li RC, Xu M, Xu SM, Lai YS, Wu HD, Xie XJ, Gao W, Ye H, Zhang YY, et al. Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc Res. 2013;98:269–276. - PubMed
    1. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 1997;276:800–806. - PubMed
    1. Gomez AM, Guatimosim S, Dilly KW, Vassort G, Lederer WJ. Heart failure after myocardial infarction: altered excitation-contraction coupling. Circulation. 2001;104:688–693. - PubMed
    1. Louch WE, Mork HK, Sexton J, Stromme TA, Laake P, Sjaastad I, Sejersted OM. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol. 2006;574:519–533. - PMC - PubMed