Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 3;24(24):5347-5359.
doi: 10.1039/d4lc00543k.

A three-dimensional vessel-on-chip model to study Puumala orthohantavirus pathogenesis

Affiliations

A three-dimensional vessel-on-chip model to study Puumala orthohantavirus pathogenesis

Danny Noack et al. Lab Chip. .

Abstract

Puumala orthohantavirus (PUUV) infection in humans can result in hemorrhagic fever with renal syndrome. Endothelial cells (ECs) are primarily infected with increased vascular permeability as a central aspect of pathogenesis. Historically, most studies included ECs cultured under static two-dimensional (2D) conditions, thereby not recapitulating the physiological environment due to their lack of flow and inherent pro-inflammatory state. Here, we present a high-throughput model for culturing primary human umbilical vein ECs in 3D vessels-on-chip in which we compared host responses of these ECs to those of static 2D-cultured ECs on a transcriptional level. The phenotype of ECs in vessels-on-chip more closely resembled the in vivo situation due to higher similarity in expression of genes encoding described markers for disease severity and coagulopathy, including IDO1, LGALS3BP, IL6 and PLAT, and more diverse endothelial-leukocyte interactions in the context of PUUV infection. In these vessels-on-chip, PUUV infection did not directly increase vascular permeability, but increased monocyte adhesion. This platform can be used for studying pathogenesis and assessment of possible therapeutics for other endotheliotropic viruses even in high biocontainment facilities.

PubMed Disclaimer

LinkOut - more resources