Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 8;33(1):249-262.
doi: 10.1016/j.ymthe.2024.09.020. Epub 2024 Sep 17.

Hypermethylation and suppression of microRNA219a-2 activates the ALDH1L2/GSH/PAI-1 pathway for fibronectin degradation in renal fibrosis

Affiliations

Hypermethylation and suppression of microRNA219a-2 activates the ALDH1L2/GSH/PAI-1 pathway for fibronectin degradation in renal fibrosis

Qingqing Wei et al. Mol Ther. .

Abstract

Epigenetic regulations, such as DNA methylation and microRNAs, play an important role in renal fibrosis. Here, we report the regulation of microRNA219a-2 by DNA methylation in fibrotic kidneys, unveiling the crosstalk between these epigenetic mechanisms. Through genome-wide DNA methylation analysis and pyrosequencing, we detected the hypermethylation of microRNA219a-2 in renal fibrosis induced by unilateral ureteral obstruction (UUO) or renal ischemia/reperfusion, which was accompanied by a significant decrease in microRNA-219a-5p expression. Functionally, overexpression of microRNA219a-2 enhanced fibronectin induction during hypoxia or TGF-β1 treatment of cultured renal cells. In mice, inhibition of microRNA-219a-5p suppressed fibronectin accumulation in UUO and ischemic/reperfused kidneys. Aldehyde dehydrogenase 1 family member L2 (ALDH1L2) was identified to be the direct target gene of microRNA-219a-5p in renal fibrotic models. MicroRNA-219a-5p suppressed ALDH1L2 expression in cultured renal cells, while inhibition of microRNA-219a-5p prevented the decrease of ALDH1L2 in injured kidneys. Knockdown of ALDH1L2 enhanced plasminogen activator inhibitor-1 (PAI-1) induction during TGF-β1 treatment of renal cells, which was associated with fibronectin expression. In conclusion, the hypermethylation of microRNA219a-2 in response to fibrotic stress may attenuate microRNA-219a-5p expression and induce the upregulation of its target gene ALDH1L2, which reduces fibronectin deposition by suppressing PAI-1.

Keywords: DNA methylation; fibronectin; kidney fibrosis; microRNA; oxidative stress.

PubMed Disclaimer

Update of

References

    1. Liu J., Wei Q., Guo C., Dong G., Liu Y., Tang C., Dong Z. Hypoxia, HIF, and Associated Signaling Networks in Chronic Kidney Disease. Int. J. Mol. Sci. 2017;18 doi: 10.3390/ijms18050950. - DOI - PMC - PubMed
    1. Meng X.M., Nikolic-Paterson D.J., Lan H.Y. TGF-beta: the master regulator of fibrosis. Nat. Rev. Nephrol. 2016;12:325–338. doi: 10.1038/nrneph.2016.48. - DOI - PubMed
    1. Li L., Fu H., Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol. 2022;18:545–557. doi: 10.1038/s41581-022-00590-z. - DOI - PubMed
    1. Lu P., Takai K., Weaver V.M., Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 2011;3 doi: 10.1101/cshperspect.a005058. - DOI - PMC - PubMed
    1. Guo C., Dong G., Liang X., Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat. Rev. Nephrol. 2019;15:220–239. doi: 10.1038/s41581-018-0103-6. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources