Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;19(12):1858-1868.
doi: 10.1038/s41565-024-01785-0. Epub 2024 Sep 19.

Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes

Affiliations

Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes

Yan Zhuo et al. Nat Nanotechnol. 2024 Dec.

Abstract

Efficient cytosolic delivery is a significant hurdle when using short interfering RNA (siRNA) in therapeutic applications. Here we show that cholesterol-rich exosomes are prone to entering cancer cells through membrane fusion, achieving direct cytosolic delivery of siRNA. Molecular dynamics simulations suggest that deformation and increased contact with the target cell membrane facilitate membrane fusion. In vitro we show that cholesterol-enriched milk-derived exosomes (MEs) achieve a significantly higher gene silencing effect of siRNA, inducing superior cancer cell apoptosis compared with the native and cholesterol-depleted MEs, as well as conventional transfection agents. When administered orally or intravenously to mice bearing orthotopic or subcutaneous tumours, the cholesterol-enriched MEs/siRNA exhibit antitumour activity superior to that of lipid nanoparticles. Collectively, by modulating the cholesterol content of exosome membranes to facilitate cell entry via membrane fusion, we provide a promising approach for siRNA-based gene therapy, paving the way for effective, safe and simple gene therapy strategies.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

References

    1. Hu, B. et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Sci. Adv. 8, eabm1418 (2022). - PubMed - PMC - DOI
    1. Zhao, J. H. & Guo, H. S. RNA silencing: from discovery and elucidation to application and perspectives. J. Integr. Plant Biol. 64, 476–498 (2022). - PubMed - DOI
    1. Chen, Y. et al. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. Nat. Nanotechnol. 18, 193–204 (2023). - PubMed - DOI
    1. Chen, X. et al. RNA interference-based therapy and its delivery systems. Cancer Metast. Rev. 37, 107–124 (2018). - DOI
    1. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013). - PubMed - DOI

LinkOut - more resources