Causal associations and shared genetic etiology of neurodegenerative diseases with epigenetic aging and human longevity
- PMID: 39300745
- PMCID: PMC11561668
- DOI: 10.1111/acel.14271
Causal associations and shared genetic etiology of neurodegenerative diseases with epigenetic aging and human longevity
Abstract
The causative mechanisms underlying the genetic relationships of neurodegenerative diseases with epigenetic aging and human longevity remain obscure. We aimed to detect causal associations and shared genetic etiology of neurodegenerative diseases with epigenetic aging and human longevity. We obtained large-scale genome-wide association study summary statistics data for four measures of epigenetic age (GrimAge, PhenoAge, IEAA, and HannumAge) (N = 34,710), multivariate longevity (healthspan, lifespan, and exceptional longevity) (N = 1,349,462), and for multiple neurodegenerative diseases (N = 6618-482,730), including Lewy body dementia, Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Main analyses were conducted using multiplicative random effects inverse-variance weighted Mendelian randomization (MR), and conditional/conjunctional false discovery rate (cond/conjFDR) approach. Shared genomic loci were functionally characterized to gain biological understanding. Evidence showed that AD patients had 0.309 year less in exceptional longevity (IVW beta = -0.309, 95% CI: -0.38 to -0.24, p = 1.51E-19). We also observed suggestively significant causal evidence between AD and GrimAge age acceleration (IVW beta = -0.10, 95% CI: -0.188 to -0.013, p = 0.02). Following the discovery of polygenic overlap, we identified rs78143120 as shared genomic locus between AD and GrimAge age acceleration, and rs12691088 between AD and exceptional longevity. Among these loci, rs78143120 was novel for AD. In conclusion, we observed that only AD had causal effects on epigenetic aging and human longevity, while other neurodegenerative diseases did not. The genetic overlap between them, with mixed effect directions, suggested complex shared genetic etiology and molecular mechanisms.
Keywords: causal relationship; epigenetic age acceleration; epigenetic clock; longevity; neurodegenerative disorders; shared genetic etology.
© 2024 The Author(s). Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
Conflict of interest statement
None declared.
Figures




References
-
- Andreassen, O. A. , Thompson, W. K. , Schork, A. J. , Ripke, S. , Mattingsdal, M. , Kelsoe, J. R. , Kendler, K. S. , O'Donovan, M. C. , Rujescu, D. , Werge, T. , Sklar, P. , Psychiatric Genomics Consortium (PGC) , Bipolar Disorder and Schizophrenia Working Groups , Roddey, J. C. , Chen, C. H. , McEvoy, L. , Desikan, R. S. , Djurovic, S. , & Dale, A. M. (2013). Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy‐informed conditional false discovery rate. PLoS Genetics, 9(4), e1003455. 10.1371/journal.pgen.1003455 - DOI - PMC - PubMed
-
- Bahrami, S. , Steen, N. E. , Shadrin, A. , O'Connell, K. , Frei, O. , Bettella, F. , Wirgenes, K. V. , Krull, F. , Fan, C. C. , Dale, A. M. , Smeland, O. B. , Djurovic, S. , & Andreassen, O. A. (2020). Shared genetic loci between body mass index and major psychiatric disorders: A genome‐wide association study. JAMA Psychiatry, 77(5), 503–512. 10.1001/jamapsychiatry.2019.4188 - DOI - PMC - PubMed
-
- Bartnik, M. , Szczepanik, E. , Derwinska, K. , Wisniowiecka‐Kowalnik, B. , Gambin, T. , Sykulski, M. , Ziemkiewicz, K. , Kędzior, M. , Gos, M. , Hoffman‐Zacharska, D. , Mazurczak, T. , Jeziorek, A. , Antczak‐Marach, D. , Rudzka‐Dybała, M. , Mazurkiewicz, H. , Goszczańska‐Ciuchta, A. , Zalewska‐Miszkurka, Z. , Terczyńska, I. , Sobierajewicz, M. , … Stankiewicz, P. (2012). Application of array comparative genomic hybridization in 102 patients with epilepsy and additional neurodevelopmental disorders. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 159B(7), 760–771. 10.1002/ajmg.b.32081 - DOI - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical