Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Oct;34(10):973-9.
doi: 10.2337/diab.34.10.973.

Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men

Comparative Study

Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men

J T Devlin et al. Diabetes. 1985 Oct.

Abstract

The effects of prior high-intensity cycle exercise (85% VO2 max) to muscular exhaustion on basal and insulin-stimulated glucose metabolism were studied in obese, insulin-resistant, and normal subjects. Six obese (30.4% fat) and six lean (14.5% fat) adult males underwent two separate, two-level hyperinsulinemic-euglycemic clamp studies (100-min infusions at 40 and 400 mU/m2/min), with and without exercise 12 h earlier. Carbohydrate oxidation was estimated by indirect calorimetry using a ventilated hood system, and endogenous glucose production by D-(3-3H)-glucose infusion. Glycogen content and glycogen synthase activity (GS %l) were measured in vastus lateralis muscle biopsies before and at the end of each insulin clamp procedure. After exercise, the obese and lean subjects had comparably low muscle glycogen concentrations (0.10 versus 0.08 mg/g protein, respectively), and equal activation of muscle GS activity (54.4 versus 45.3 GS %l, respectively). In the obese subjects, insulin-stimulated glucose disposal was increased significantly, but not totally corrected to normal. In both groups there was a comparable increase in nonoxidative glucose disposal (NOGD), whereas glucose oxidation was decreased and lipid oxidation was increased. Thus, the major effect of prior exercise was to increase insulin-stimulated glucose disposal in the obese subjects and to alter the pathways of glucose metabolism to favor NOGD and decrease glucose oxidation. No correlation was found between the exercise-induced increase in GS %l and NOGD, except in the normal subjects during maximal insulin stimulation. Thus, glycogen synthase activity does not appear to be rate-limiting for NOGD at physiologic insulin concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types