Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan;20(1):92-162.
doi: 10.1038/s41596-024-01046-3. Epub 2024 Sep 20.

Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data

Abzer K Pakkir Shah  1   2 Axel Walter  1   2   3 Filip Ottosson  4 Francesco Russo  4 Marcelo Navarro-Diaz  2 Judith Boldt  1   5   6 Jarmo-Charles J Kalinski  1   7 Eftychia Eva Kontou  1   8 James Elofson  9 Alexandros Polyzois  1   10 Carolina González-Marín  1   11 Shane Farrell  12   13 Marie R Aggerbeck  1   14 Thapanee Pruksatrakul  1   15 Nathan Chan  16 Yunshu Wang  16 Magdalena Pöchhacker  1   17 Corinna Brungs  18 Beatriz Cámara  19 Andrés Mauricio Caraballo-Rodríguez  20 Andres Cumsille  19 Fernanda de Oliveira  20   21 Kai Dührkop  22 Yasin El Abiead  20 Christian Geibel  2 Lana G Graves  23   24 Martin Hansen  14 Steffen Heuckeroth  25 Simon Knoblauch  2 Anastasiia Kostenko  9 Mirte C M Kuijpers  26 Kevin Mildau  1   27   28 Stilianos Papadopoulos Lambidis  2 Paulo Wender Portal Gomes  20 Tilman Schramm  2   29 Karoline Steuer-Lodd  2   29 Paolo Stincone  2 Sibgha Tayyab  2 Giovanni Andrea Vitale  2 Berenike C Wagner  2 Shipei Xing  20 Marquis T Yazzie  9 Simone Zuffa  20   30 Martinus de Kruijff  31 Christine Beemelmanns  31   32 Hannes Link  2 Christoph Mayer  2 Justin J J van der Hooft  1   28   33 Tito Damiani  18 Tomáš Pluskal  18 Pieter Dorrestein  20 Jan Stanstrup  34 Robin Schmid  1   18 Mingxun Wang  1   16 Allegra Aron  1   9 Madeleine Ernst  35 Daniel Petras  36   37   38
Affiliations

Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data

Abzer K Pakkir Shah et al. Nat Protoc. 2025 Jan.

Abstract

Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.

PubMed Disclaimer

Conflict of interest statement

Competing interests: J.J.J.v.d.H. is currently a member of the Scientific Advisory Board of Naicons Srl., Milano, Italy, and is consulting for Corteva Agriscience. P.C.D. is a scientific advisor and holds equity to Cybele and a cofounder, advisor, and holds equity in Ometa, Arome and Enveda with prior approval by UC-San Diego and consulted in 2023 for DSM animal health. M.W. is the founder of Ometa Labs. S.H., T.P. and R.S. are cofounders of mzio GmbH.

References

    1. Vailati-Riboni, M., Palombo, V. & Loor, J. J. What are omics sciences? in Periparturient Diseases of Dairy Cows (ed. Ametaj, B.) Ch. 1 (Springer, 2017); https://doi.org/10.1007/978-3-319-43033-1_1 .
    1. Patti, G. J., Yanes, O. & Siuzdak, G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269 (2012). - PubMed - PMC - DOI
    1. Dayalan, S., Xia, J., Spicer, R. A., Salek, R. & Roessner, U. Metabolome analysis. in Encyclopedia of Bioinformatics and Computational Biology (eds. Ranganathan, S., Gribskov, M., Nakai, K. & Schönbach, C.) 396–409 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-809633-8.20251-3 .
    1. Tolstikov, V., Moser, A. J., Sarangarajan, R., Narain, N. R. & Kiebish, M. A. Current status of metabolomic biomarker discovery: impact of study design and demographic characteristics. Metabolites 10, 224 (2020). - PubMed - PMC - DOI
    1. de Jonge, N. F. et al. Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics 18, 103 (2022). - PubMed - PMC - DOI

Publication types

MeSH terms

LinkOut - more resources