Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Nov:180:117457.
doi: 10.1016/j.biopha.2024.117457. Epub 2024 Sep 20.

A comprehensive review of Co3O4 nanostructures in cancer: Synthesis, characterization, reactive oxygen species mechanisms, and therapeutic applications

Affiliations
Free article
Review

A comprehensive review of Co3O4 nanostructures in cancer: Synthesis, characterization, reactive oxygen species mechanisms, and therapeutic applications

Negar Bayati-Komitaki et al. Biomed Pharmacother. 2024 Nov.
Free article

Abstract

Nanotechnology involves creating, analyzing, and using tiny materials. Cobalt oxide nanoparticles (Co3O4 NPs) have several medicinal uses due to their unique antifungal, antibacterial, antioxidant, anticancer, larvicidal, anticholinergic, antileishmanial, wound healing, and antidiabetic capabilities. Cobalt oxide nanoparticles (Co3O4 NPs) with attractive magnetic properties have found widespread use in biomedical applications, including magnetic resonance imaging, magnetic hyperthermia, and magnetic targeting. The high surface area of Co3O4 leads to unique electrical, optical, catalytic, and magnetic properties, which make it a promising candidate for biomedical bases. Additionally, cobalt nanoparticles with various oxidation states (i.e., Co2+, Co3+, and Co4+) are beneficial in numerous utilizations. Co3O4 nanoparticles as a catalyzer accelerate the conversion rate of hydrogen peroxide (H2O2) to harmful hydroxyl radicals (OH), which destroy tumor cells. However, it is also possible to enhance the generation of reactive oxygen species (ROS) and successfully treat cancer by combining these nanoparticles with drugs or other nanoparticles. This review summarizes the past concepts and discusses the present state and development of using Co3O4 NPs in cancer treatments by ROS generation. This review emphasizes the advances and current patterns in ROS generation, remediation, and some different cancer treatments using Co3O4 nanoparticles in the human body. It also discusses synthesis techniques, structure, morphological, optical, and magnetic properties of Co3O4 NPs.

Keywords: Biomedical; Cancer therapy; Co(3)O(4) nanostructures; Nanotechnology; Reactive oxygen species.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources