Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 23;51(1):1008.
doi: 10.1007/s11033-024-09951-2.

N-acetylcysteine mitigates oxidative damage to the ovary in D-galactose-induced ovarian failure in rabbits

Affiliations

N-acetylcysteine mitigates oxidative damage to the ovary in D-galactose-induced ovarian failure in rabbits

Yu Xue et al. Mol Biol Rep. .

Abstract

Background: Oxidative damage to the ovaries is the primary cause of impaired reproductive functions in female animals. This study aimed to investigate the protective role of N-Acetyl-L-cysteine (NAC) in reducing oxidative damage in the ovaries of female rabbits.

Methods and results: Female rabbit ovaries were treated in vitro with varying concentrations of D-galactose (D-gal): 0, 5, 10, and 15 mg/mL, and it was found that 10 mg/mL D-gal significantly disrupted follicular structures, causing disarray in granulosa cell arrangements and significantly reducing T-SOD and GSH levels (p < 0.01). Consequently, we selected 10 mg/mL D-gal to establish an ovarian failure model. These models were treated with multiple doses of NAC (0, 0.1, 0.3, 0.5 mg/mL). The results revealed that the disruption in granulosa cell arrangement caused by 10 mg/mL D-gal was effectively alleviated by 0.1 mg/mL NAC compared to the D-gal treatment group. Furthermore, 10 mg/mL D-gal significantly (p < 0.01) reduced GSH, T-SOD, and catalase (CAT) levels in the ovaries. However, 0.1 mg/mL NAC effectively (p < 0.01) suppressed these adverse effects. Moreover, the current results showed that 10 mg/mL D-gal alone significantly (p < 0.01) downregulated the expression of Nrf2, GPX, PRDX4, GSR, SOD1, and TAF4B, whereas 0.1 mg/mL NAC counteracted these suppressive effects (p < 0.01).

Conclusions: It could be concluded that NAC may delay ovarian failure by reducing D-gal-induced ovarian oxidative damage in female rabbit, suggested NAC could be a promising therapeutic agent for protecting against ovarian failure and potentially delaying ovarian failure in female rabbits.

Keywords: D-galactose; N-acetylcysteine; Ovarian failure; Oxidative damage.

PubMed Disclaimer

Similar articles

References

    1. Wang XF, Wang LJ, Xiang WP (2023) Mechanisms of ovarian aging in women: a review. J Ovarian Res. https://doi.org/10.1186/s13048-023-01151-z - DOI
    1. Zerin T, Kim YS, Hong SY, Song HY (2013) Quercetin reduces oxidative damage induced by paraquat via modulating expression of antioxidant genes in A549 cells. J Appl Toxicol 33:1460–1467. https://doi.org/10.1002/jat.2812 - DOI
    1. Matsuda F, Inoue N, Manabe N, Ohkura S (2012) Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev 58:44–50. https://doi.org/10.1262/jrd.2011-012 - DOI
    1. Stier A, Reichert S, Massemin S, Bize P, Criscuolo F (2012) Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory mice and review of the literature. Front Zool 9:37. https://doi.org/10.1186/1742-9994-9-37 - DOI
    1. Li JD, Wang TQ, Liu PP, Yang FY, Wang XD, Zheng WL, Sun WL (2021) Hesperetin ameliorates hepatic oxidative stress and inflammation the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct 12:3898–3918. https://doi.org/10.1039/d0fo02736g - DOI

MeSH terms

LinkOut - more resources