Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 5:279:116886.
doi: 10.1016/j.ejmech.2024.116886. Epub 2024 Sep 16.

Exploration of isatin-based inhibitors of SARS-CoV-2 Nsp15 endoribonuclease

Affiliations

Exploration of isatin-based inhibitors of SARS-CoV-2 Nsp15 endoribonuclease

Theodoros Rampias et al. Eur J Med Chem. .

Abstract

The global health crisis caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) urges the development of new antiviral agents with broad coronavirus coverage. Due to its key role in viral evasion from the host innate immune response, the coronavirus Nsp15 uridine-specific endoribonuclease (EndoU) is of high interest as a drug target. Considering that the isatin scaffold is well-known for its versatile pharmacological properties, we synthesized and evaluated a series of compounds carrying an isatin core. The initial compounds were selected on the basis of in silico predictions. After biochemical assays showed moderate inhibition of SARS-CoV-2 EndoU-mediated RNA cleavage, structural analogues were rationally designed to enhance the interaction with the target. This included the incorporation of a nitrile group since this dipole can improve ADME and facilitate polar interactions with proteins and can operate as hydroxy or carboxy surrogate. A straightforward solvent free and green, microwave-assisted synthetic process was established to achieve the development of the different target compounds. The best compound exhibited inhibitory activity in enzymatic EndoU assays, and reduced the SARS-CoV-2 viral RNA load by almost 68,000-fold in the low micromolar range similarly to the established antiviral agent GS-441524.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest All authors have approved the final submission to the journal. The authors declare no conflict of interest.

MeSH terms

LinkOut - more resources