Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 1:954:176432.
doi: 10.1016/j.scitotenv.2024.176432. Epub 2024 Sep 21.

Leydig cells pyroptosis in testis mediates deoxynivalenol-induced male reproductive toxicity in mice

Affiliations

Leydig cells pyroptosis in testis mediates deoxynivalenol-induced male reproductive toxicity in mice

Yong-Bao Ruan et al. Sci Total Environ. .

Abstract

Deoxynivalenol (DON) is a toxic secondary metabolite produced by Fusarium spp. It is widely distributed among various cereals and has attracted much attention as a potential health threat to humans and domestic animals. However, the effects of DON on the reproductive systems of mammals are still ambiguous. In this study, the toxic effects of DON in the male reproduction of mice were investigated. The results showed that DON caused the shedding of sperm cells at all testis levels and the presence of inflammatory cells in the testicular interstitium. The rate of living sperm was significantly reduced, and the rate of sperm deformity was increased after DON exposure. The DON exposure resulted in decreased levels of testosterone (T) and increased levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the serum. Measurements of oxidative stress markers showed that DON induced oxidative stress in mice testis. Meanwhile, DON triggered the assembly of NLRP3-ASC-Caspase-1 inflammatory complex and pyroptosis in both mice testis and TM3 cells, further causing the activation of GSDMD, promoting the leakage of inflammatory cytokines, including IL-1β and IL-18. Notably, the inhibition of oxidative stress was found to protect pyroptosis in TM3 cells exposed to DON. We identified a novel mechanism of reproductive damage induced by DON, demonstrating the activation of the canonical Caspase-1-dependent pyroptosis pathway and clarifying the protection of antioxidation against pyroptosis damage. Our discovery provided support for the risk assessment of DON and target exploration for clinical treatment related to pyroptosis.

Keywords: Deoxynivalenol; Leydig cells; NLRP3; Pyroptosis; ROS.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources