Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Sep 10:2024.09.09.611297.
doi: 10.1101/2024.09.09.611297.

Extracellular vesicles regulate metastable phenotypes of lymphangioleiomyomatosis cells via shuttling ATP synthesis to pseudopodia and activation of integrin adhesion complexes

Extracellular vesicles regulate metastable phenotypes of lymphangioleiomyomatosis cells via shuttling ATP synthesis to pseudopodia and activation of integrin adhesion complexes

Anil Kumar Kalvala et al. bioRxiv. .

Abstract

Pulmonary lymphangioleiomyomatosis (LAM) is metastatic sarcoma but mechanisms regulating LAM metastasis are unknown. Extracellular vesicle (EV) regulate cancer metastasis but their roles in LAM have not yet been investigated. Here, we report that EV biogenesis is increased in LAM and LAM EV cargo is enriched with lung tropic integrins, metalloproteinases, and cancer stem cell markers. LAM-EV increase LAM cell migration and invasion via the ITGα6/β1-c-Src-FAK-AKT axis. Metastable (hybrid) phenotypes of LAM metastasizing cells, pivotal for metastasis, are regulated by EV from primary tumor or metastasizing LAM cells via shuttling ATP synthesis to cell pseudopodia or activation of integrin adhesion complex, respectively. In mouse models of LAM, LAM-EV increase lung metastatic burden through mechanisms involving lung extracellular matrix remodeling. Collectively, these data provide evidence for the role of EV in promoting LAM lung metastasis and identify novel EV-dependent mechanisms regulating metastable phenotypes of tumor cells. Clinical impact of research is that it establishes LAM pathway as novel target for LAM therapy.

PubMed Disclaimer

Publication types

LinkOut - more resources