Wafer-Scale MgB2 Superconducting Devices
- PMID: 39316430
- PMCID: PMC11468078
- DOI: 10.1021/acsnano.4c11001
Wafer-Scale MgB2 Superconducting Devices
Abstract
Progress in superconducting device and detector technologies over the past decade has realized practical applications in quantum computers, detectors for far-infrared telescopes, and optical communications. Superconducting thin-film materials, however, have remained largely unchanged, with aluminum still being the material of choice for superconducting qubits and niobium compounds for high-frequency/high kinetic inductance devices. Magnesium diboride (MgB2), known for its highest transition temperature (Tc = 39 K) among metallic superconductors, is a viable material for elevated temperature and higher frequency superconducting devices moving toward THz frequencies. However, difficulty in synthesizing wafer-scale thin films has prevented implementation of MgB2 devices into the application base of superconducting electronics. Here, we report ultrasmooth (<0.5 nm root-mean-square roughness) and uniform MgB2 thin (<100 nm) films over 100 mm in diameter and present prototype devices fabricated with these films demonstrating key superconducting properties including an internal quality factor over 104 at 4.5 K and high tunable kinetic inductance in the order of tens of pH/sq in a 40 nm thick film. This advancement will enable development of elevated temperature, high-frequency superconducting quantum circuits, and devices.
Keywords: MgB2; high frequency; high-Tc; kinetic inductance; superconducting devices; thin films; wafer-scale.
Conflict of interest statement
The authors declare the following competing financial interest(s): The California Institute of Technology has filed a U.S. utility patent with the title Wafer scale production of superconducting magnesium diboride thin films with high transition temperature (inventors: C.K. and D.P.C.) describing the superconducting magnesium diboride thin film and device fabrication methods described in this paper.
Figures









References
-
- Ade P. A. R.; Ahmed Z.; Amiri M.; Barkats D.; Thakur R. B.; Bischoff C. A.; Beck D.; Bock J. J.; Boenish H.; Bullock E.; Buza V.; Cheshire J. R. IV; Connors J.; Cornelison J.; Crumrine M.; Cukierman A.; Denison E. V.; Dierickx M.; Duband L.; Eiben M.; Fatigoni S.; Filippini J. P.; Fliescher S.; Goeckner-Wald N.; Goldfinger D. C.; Grayson J.; Grimes P.; Hall G.; Halal G.; Halpern M.; Hand E.; Harrison S.; Henderson S.; Hildebrandt S. R.; Hilton G. C.; Hubmayr J.; Hui H.; Irwin K. D.; Kang J.; Karkare K. S.; Karpel E.; Kefeli S.; Kernasovskiy S. A.; Kovac J. M.; Kuo C. L.; Lau K.; Leitch E. M.; Lennox A.; Megerian K. G.; Minutolo L.; Moncelsi L.; Nakato Y.; Namikawa T.; Nguyen H. T.; O’Brient R.; Ogburn R. W. IV; Palladino S.; Prouve T.; Pryke C.; Racine B.; Reintsema C. D.; Richter S.; Schillaci A.; Schwarz R.; Schmitt B. L.; Sheehy C. D.; Soliman A.; Germaine T. St.; Steinbach B.; Sudiwala R. V.; Teply G. P.; Thompson K. L.; Tolan J. E.; Tucker C.; Turner A. D.; Umiltà C.; Vergès C.; Vieregg A. G.; Wandui A.; Weber A. C.; Wiebe D. V.; Willmert J.; Wong C. L.; Wu W. L. K.; Yang H.; Yoon K. W.; Young E.; Yu C.; Zeng L.; Zhang C.; Zhang S. BICEP/Keck XV: The BICEP3 Cosmic Microwave Background Polarimeter and the First Three-Year Data Set. Astrophys. J. 2022, 927 (1), 77.10.3847/1538-4357/ac4886. - DOI
-
- Echternach P. M.; Pepper B. J.; Reck T.; Bradford C. M. Single Photon Detection of 1.5 THz Radiation with the Quantum Capacitance Detector. Nat. Astron. 2018, 2 (1), 90–97. 10.1038/s41550-017-0294-y. - DOI
-
- Mattioli F.; Zhou Z.; Gaggero A.; Gaudio R.; Jahanmirinejad S.; Sahin D.; Marsili F.; Leoni R.; Fiore A. Photon-Number-Resolving Superconducting Nanowire Detectors. Supercond. Sci. Technol. 2015, 28 (10), 104001.10.1088/0953-2048/28/10/104001. - DOI
-
- Zmuidzinas J.; Ugras N. G.; Miller D.; Gaidis M.; LeDuc H. G.; Stern J. A. Low-Noise Slot Antenna SIS Mixers. IEEE Trans. Appl. Supercond. 1995, 5 (2), 3053–3056. 10.1109/77.403236. - DOI