Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 15:300:120858.
doi: 10.1016/j.neuroimage.2024.120858. Epub 2024 Sep 22.

Deep learning enables accurate brain tissue microstructure analysis based on clinically feasible diffusion magnetic resonance imaging

Affiliations

Deep learning enables accurate brain tissue microstructure analysis based on clinically feasible diffusion magnetic resonance imaging

Yuxing Li et al. Neuroimage. .

Abstract

Diffusion magnetic resonance imaging (dMRI) allows non-invasive assessment of brain tissue microstructure. Current model-based tissue microstructure reconstruction techniques require a large number of diffusion gradients, which is not clinically feasible due to imaging time constraints, and this has limited the use of tissue microstructure information in clinical settings. Recently, approaches based on deep learning (DL) have achieved promising tissue microstructure reconstruction results using clinically feasible dMRI. However, it remains unclear whether the subtle tissue changes associated with disease or age are properly preserved with DL approaches and whether DL reconstruction results can benefit clinical applications. Here, we provide the first evidence that DL approaches to tissue microstructure reconstruction yield reliable brain tissue microstructure analysis based on clinically feasible dMRI scans. Specifically, we reconstructed tissue microstructure from four different brain dMRI datasets with only 12 diffusion gradients, a clinically feasible protocol, and the neurite orientation dispersion and density imaging (NODDI) and spherical mean technique (SMT) models were considered. With these results we show that disease-related and age-dependent alterations of brain tissue were accurately identified. These findings demonstrate that DL tissue microstructure reconstruction can accurately quantify microstructural alterations in the brain based on clinically feasible dMRI.

Keywords: Clinical brain analysis; Deep learning; Diffusion magnetic resonance imaging; Tissue microstructure reconstruction.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Frederik Barkhof acts as a consultant for Bayer-Schering, Biogen-Idec, GeNeuro, Ixico, Merck-Serono, Novartis and Roche. He has received grants, or grants are pending, from the Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) initiative, the Biomedical Research Centre at University College London Hospitals, the Dutch MS Society, ECTRIMS–MAGNIMS, EU-H2020, the Dutch Research Council (NWO), the UK MS Society, and the National Institute for Health Research, University College London. He has received payments for the development of educational presentations from Ixico and his institution from Biogen-Idec and Merck. He is on the editorial board of Radiology, Neuroradiology, Multiple Sclerosis Journal and Neurology.