Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Oct;86(2):427-37.
doi: 10.1111/j.1476-5381.1985.tb08912.x.

Mechanisms underlying the electrical and mechanical responses of the guinea-pig internal anal sphincter to field stimulation and to drugs

Mechanisms underlying the electrical and mechanical responses of the guinea-pig internal anal sphincter to field stimulation and to drugs

S P Lim et al. Br J Pharmacol. 1985 Oct.

Abstract

The electrical membrane characteristics and the response of the circular muscle of the guinea-pig internal anal sphincter (i.a.s.) to field stimulation were studied in vitro using intracellular microelectrodes and conventional mechanical recording techniques. The i.a.s. developed its own tone (3-4 g), following initial stretch (1 g) and spontaneous spike potentials were evident. In the absence of spike potentials, tone declined and disappeared. Tone was not significantly reduced by phentolamine (1 X 10(-6)M). The resting membrane potential, measured between spontaneous spike potentials, was -45 +/- 3.0 mV (n = 224); the space constant (lambda) was 1.13 +/- 0.1 mm (n = 13). Spikes usually overshot by approximately 15 mV. The frequency of spike potential discharge (1-3 Hz) varied with the degree of membrane depolarization, being increased in K+-rich and decreased in K+-deficient solutions or by the presence of Mn2+. It was not significantly affected by C1-withdrawal but was increased in Na+-deficient solutions with or without tetrodotoxin (TTX; 1 X 10(-6)M). Field stimulation (1-20 Hz, 0.5 ms, supramaximal voltage) produced inhibitory junction potentials (i.j.ps) and relaxed tone; at high frequencies (50 Hz or greater), contractions were observed but excitatory junction potentials (e.j.ps) were not. I.j.ps and relaxations were inhibited by apamin (1 X 10(-6)M), TTX (1 X 10(-6)M) but not by atropine (1 X 10(-6)M), phentolamine (1 X 10(-6)M) or hexamethonium (1 X 10(-6)M). I.j.ps were reduced by hyperpolarization and enhanced by depolarization of the membrane by current pulses (15s). The mean equilibrium potential for the i.j.p. was -94 mV (correlation coefficient, gamma = 0.71, n = 5, p less than 0.001). I.j.ps were enhanced in K+-deficient solutions and reduced in K+-rich solutions. Together these results suggest that the i.j.p. is mediated by an increased GK. The absence of [Ca2+]o or the presence of Mn2+ (2 mM) abolished the i.j.p.; in contrast Na+-deficient or C1-free solutions were ineffective in this respect. Tetraethylammonium (5-50mM) abolished the i.j.p.; the accompanying relaxation was reduced by about 80%. The major aspect of the relaxation to nerve stimulation is mediated by membrane hyperpolarization.

PubMed Disclaimer

References

    1. J Physiol. 1973 Jun;231(3):455-70 - PubMed
    1. J Physiol. 1981 Feb;311:475-88 - PubMed
    1. J Gen Physiol. 1970 Jan;55(1):48-62 - PubMed
    1. Br J Pharmacol. 1984 Apr;81(4):665-74 - PubMed
    1. J Physiol. 1968 May;196(1):87-100 - PubMed

Publication types

LinkOut - more resources