Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug;32(4):310-319.
doi: 10.1017/S0967199424000145. Epub 2024 Sep 25.

Influence of choline and follistatin supplementation during in vitro bovine oocyte maturation on oocyte competence and blastocyst development

Affiliations

Influence of choline and follistatin supplementation during in vitro bovine oocyte maturation on oocyte competence and blastocyst development

Alexandria P Snider et al. Zygote. 2024 Aug.

Abstract

Metabolite supplementation during in vitro embryo development improves blastocyst quality, however, our understanding of the incorporation of metabolites during in vitro maturation (IVM) is limited. Two important metabolites, follistatin and choline, have beneficial impacts during in vitro culture; however, effects of supplementation during IVM are unknown. The objective of this study was to investigate combining choline and follistatin during IVM on bovine oocytes and subsequent early embryonic development. We hypothesized that supplementation of choline with follistatin would synergistically improve oocyte quality and subsequent early embryonic development. Small follicles were aspirated from slaughterhouse ovaries to obtain cumulus oocyte complexes for IVM with choline (0, 1.3 or 1.8 mM) and follistatin (0 or 10 ng/mL) supplementation in a 3 × 2 design. A subset of oocytes underwent transcriptomic analysis, the remaining oocytes were used for IVF and in vitro culture (IVC). Transcript abundance of CEPT1 tended to be reduced in oocytes supplemented with 1.8 mM choline and follistatin compared to control oocytes (P = 0.07). Combination of follistatin with 1.8 mM choline supplementation during maturation, tended (P = 0.08) to reduce CPEB4 in oocytes. In the blastocysts, HDCA8, NANOG, SAV1 and SOX2 were increased with choline 1.8 mM supplementation without follistatin (P < 0.05), while HDCA8 and SOX2 were increased when follistatin was incorporated (P < 0.05). The combination of choline and follistatin during oocyte maturation may provide a beneficial impact on early embryonic development. Further research is warranted to investigate the interaction between these two metabolites during early embryonic development and long-term influence on fetal development.

Keywords: blastocyst; embryo; maturation; one-carbon metabolite; oocyte.

PubMed Disclaimer