Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 2;64(1):e202414698.
doi: 10.1002/anie.202414698. Epub 2024 Nov 14.

Stereocontrolled Synthesis of Chiral Helicene-Indenido ansa- and Half-Sandwich Metal Complexes and Their Use in Catalysis

Affiliations

Stereocontrolled Synthesis of Chiral Helicene-Indenido ansa- and Half-Sandwich Metal Complexes and Their Use in Catalysis

Tereza Edlová et al. Angew Chem Int Ed Engl. .

Abstract

Despite recent tremendous progress in the synthesis of nonplanar chiral aromatics, and helicenes in particular, their conversion to half-sandwich or sandwich transition metal complexes still lags behind, although they represent an attractive family of modular and underexplored chiral architectures with a potential catalytic use. In this work, starting from various chiral helicene-indene proligands, we prepared the enantio- and diastereopure oxa[6]- and oxa[7]helicene-indenido half-sandwich RhI and RhIII complexes and oxa[7]helicene-bisindenido ansa-metallocene FeII complex. To document their use, oxahelicene-indenido half-sandwich RhIII complexes were employed as chiral catalysts in enantioselective C-H arylation of benzo[h]quinolines with 1-diazonaphthoquinones to afford a series of axially chiral biaryls in mostly good to high yields and in up to 96 : 4 er. Thus, we developed stereocontrolled synthesis of chiral helicene-indenido ansa- and half-sandwich metal complexes, successfully demonstrated the first use of such helicene Cp-related metal complexes in enantioselective catalysis, and described an unusual sequence of efficient central-to-helical-to-planar-to-axial chirality transfer.

Keywords: C−H activation; ansa-metallocene; enantioselective catalysis; half-sandwich complexes; helicenes.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A: Examples of chiral indenido half‐sandwich metal complexes used in enantioselective catalysis. B: Rare chiral helicene‐derived indenido, fluorenido and other sandwich metal complexes, not yet examined in catalysis. C: The chiral (oxa)helicene‐indenido half‐sandwich RhI (A) and RhIII (B) complexes (structural variations marked in dark turquoise) and the ansa‐metallocene FeII complex 7 reported in this work were prepared enantio‐ and diastereopure; the RhIII complexes were used in enantioselective C−H arylation with diazonaphthoquinones.
Scheme 1
Scheme 1
Illustrative synthesis of enantio‐ and diastereopure helicene‐indene proligands (−)‐(M,R,R)‐14 ae and (−)‐(M,R,R)‐18. Reaction conditions: (a) NIS (1.0 equiv.), DMF, 0 °C, 8.5 h, then AcCl (1.5 equiv.), Et3N (2.5 equiv.), DCM, 0 °C to rt, 30 min, 60 %; (b) TIPS‐acetylene (3.0 equiv.), Pd(PPh3)2Cl2 (5 mol %), CuI (10 mol %), Et3N‐toluene (1 : 2), 40 °C, 3 h, 88 %; (c) K2CO3 (2.0 equiv.), MeOH, rt, 20 min, 97 %; (d) (−)‐(S)‐4‐(p‐tolyl)‐3‐butyl‐2‐ol 10 (1.2 equiv.), PPh3 (1.1 equiv.), DIAD (1.2 equiv.), benzene, 0 °C to rt, 2 h, 94 %; (e) TBAF ⋅ 3H2O (1.0 equiv.), THF, 0 °C, 5 min, 90 %; (f) 2‐iodophenol (3.0 equiv.), Pd(PPh3)4 (5 mol %), CuI (5 mol %), Et3N (1.3 equiv.), toluene, 50 °C, 48 h, 70 %; (g) (−)‐(S)‐4‐(p‐tolyl)‐3‐butyl‐2‐ol 10 (1.2 equiv.), PPh3 (1.1 equiv.), DIAD (1.2 equiv.), benzene, 0 °C to rt, 2 h, 84 %; (h) Ni(PPh3)2(CO)2 (20 mol %), toluene, 120 °C, 5 min, 74 %; (i) MeMgBr (1.5 equiv.)/ EtMgBr (1.5 equiv.)/PhMgCl (2.0 equiv.)/o‐MeC6H4MgCl (1.5 equiv.)/p‐MeOC6H4MgBr (1.5 equiv.), THF, −80 °C to rt, 1 h, then p‐TsOH (20 mol %), toluene, 110 °C, 1 min, 88 % for 14 a, 72 % for 14 b, 85 % for 14 c, 66 % for 14 d, 83 % for 14 e; (j) THP‐protected 5‐hydroxy‐4‐iodo‐2,3‐dihydro‐1H‐inden‐1‐one 15 (2.0 equiv.), Pd(PPh3)4 (5 mol %), CuI (10 mol %), toluene‐Et3N (3 : 1), 50 °C, 18 h, 79 %; (k) p‐TsOH (10 mol %), THF‐MeOH (1 : 1), rt, 18 h, 91 %; (l) (−)‐(S)‐4‐(p‐tolyl)‐3‐butyl‐2‐ol 10 (1.2 equiv.), PPh3 (1.1 equiv.), DIAD (1.2 equiv.), benzene, 0 °C to rt, 4 h, 86 %; (m) CpCo(CO)(fum) (40 mol %), THF, flow reactor, 250 °C, 80 bar, 0.5 mL/min, 16 min residence time, 80 %; (n) NaBH4 (8.0 equiv.), MeOH, rt, 30 min, then p‐TsOH (20 mol %), toluene, 110 °C, 1 min, 85 %.
Scheme 2
Scheme 2
Preparation of the enantio‐ and diastereopure oxa[7]helicene‐bisindenido ansa‐ferrocene complex (M,R,R,S p,S p)‐7. Reaction conditions (in drybox): (a) KHMDS (2.0 equiv.), diethyl ether, rt, 5 min, 64 %; (b) FeCl2 (1.0 equiv.), THF, −20 °C to rt, 18 h, 30 %.
Figure 2
Figure 2
ORTEP depiction of the XRD structure of (M,R,R,S p,S p)‐7 (CCDC 2373549). One pentane solvent molecule and hydrogen atoms are omitted for clarity, thermal ellipsoids are drawn at the 50 % probability level.
Figure 3
Figure 3
The optimized structure and relative energy of four possible diastereomers of the chiral oxa[6]helicene‐indenido RhI complex 22 a, calculated at the DFT B3LYP/Def2TZVP/GD3 level in vacuo using the Gaussian 16 package (hydrogen atoms omitted for clarity; grey: C, red: O, turquoise: Rh).
Figure 4
Figure 4
A part of the 1H−1H NOESY NMR spectrum of the enantio‐ and diastereopure RhI complex (−)‐(M,R,R,R p)‐22 c showing a through‐space correlation between hydrogen atoms of the syn oriented pseudoaxial 7‐CH3 group and the 1′‐CH unit of the coordinated COD‐RhI fragment. The molecular structure was optimized at the DFT B3LYP/Def2TZVP/GD3 level in vacuo using the Gaussian 16 package (only the concerned hydrogens shown; grey: C, red: O, turquoise: Rh, white: H).
Figure 5
Figure 5
Correlation of the ECD spectra of the enantio‐ and diastereopure oxa[6]helicene‐indene proligand (−)‐(M,R,R)‐14 a and the corresponding RhI and RhIII complexes (−)‐(M,R,R,R p)‐22 a and (−)‐(M,R,R,R p)‐25a(Br), respectively, to demonstrate the conservation of M helicity of the scaffold; experimental spectra measured in THF (10−4 M); theoretical ECD spectra calculated at the TD‐DFT PBE0/Def2‐TZVP (or Def2‐SVP)/GD3/PCM (in THF) level using the Gaussian 16 package.
Scheme 3
Scheme 3
Application of the enantio‐ and diastereopure oxa[6]helicene‐Indenido half‐sandwich RhIII complex (−)‐(M,R,R,R p)‐25 a(Br) in the model RhIII‐catalyzed C−H activation associated with atroposelective [4+2] annulative coupling of biphenyl boronic acids with α‐diazo β‐ketoesters.

References

    1. Pammer F., Thiel W. R., Coord. Chem. Rev. 2014, 270–271, 14–30.
    1. Schumann H., Stenzel O., Dechert S., Girgsdies F., Blum J., Gelman D., Halterman R. L., Eur. J. Inorg. Chem. 2002, 2002, 211–219.
    1. Gutnov A., Heller B., Fischer C., Drexler H.-J., Spannenberg A., Sundermann B., Sundermann C., Angew. Chem. Int. Ed. 2004, 43, 3795–3797. - PubMed
    1. Heller B., Gutnov A., Fischer C., Drexler H.-J., Spannenberg A., Redkin D., Sundermann C., Sundermann B., Chem. Eur. J. 2007, 13, 1117–1128. - PubMed
    1. Hapke M., Kral K., Fischer C., Spannenberg A., Gutnov A., Redkin D., Heller B., J. Org. Chem. 2010, 75, 3993–4003. - PubMed

LinkOut - more resources