NPCoronaPredict: A Computational Pipeline for the Prediction of the Nanoparticle-Biomolecule Corona
- PMID: 39324861
- PMCID: PMC11480982
- DOI: 10.1021/acs.jcim.4c00434
NPCoronaPredict: A Computational Pipeline for the Prediction of the Nanoparticle-Biomolecule Corona
Abstract
The corona of a nanoparticle immersed in a biological fluid is of key importance to its eventual fate and bioactivity in the environment or inside live tissues. It is critical to have insight into both the underlying bionano interactions and the corona composition to ensure biocompatibility of novel engineered nanomaterials. A prediction of these properties in silico requires the successful spanning of multiple orders of magnitude of both time and physical dimensions to produce results in a reasonable amount of time, necessitating the development of a multiscale modeling approach. Here, we present the NPCoronaPredict open-source software package: a suite of software tools to enable this prediction for complex multicomponent nanomaterials in essentially arbitrary biological fluids, or more generally any medium containing organic molecules. The package integrates several recent physics-based computational models and a library of both physics-based and data-driven parametrizations for nanomaterials and organic molecules. We describe the underlying theoretical background and the package functionality from the design of multicomponent NPs through to the evaluation of the corona.
Conflict of interest statement
The authors declare no competing financial interest.
Figures









Similar articles
-
Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches.SAR QSAR Environ Res. 2016 Jul;27(7):521-38. doi: 10.1080/1062936X.2016.1197310. Epub 2016 Jun 22. SAR QSAR Environ Res. 2016. PMID: 27329717
-
How protein coronas determine the fate of engineered nanoparticles in biological environment.Arh Hig Rada Toksikol. 2017 Dec 20;68(4):245-253. doi: 10.1515/aiht-2017-68-3054. Arh Hig Rada Toksikol. 2017. PMID: 29337683 Review.
-
Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection.Acc Chem Res. 2021 Jan 19;54(2):291-301. doi: 10.1021/acs.accounts.0c00413. Epub 2020 Nov 12. Acc Chem Res. 2021. PMID: 33180454
-
Understanding the nanoparticle-protein corona complexes using computational and experimental methods.Int J Biochem Cell Biol. 2016 Jun;75:162-74. doi: 10.1016/j.biocel.2016.02.008. Epub 2016 Feb 9. Int J Biochem Cell Biol. 2016. PMID: 26873405 Review.
-
In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.Acc Chem Res. 2017 Feb 21;50(2):387-395. doi: 10.1021/acs.accounts.6b00579. Epub 2017 Feb 1. Acc Chem Res. 2017. PMID: 28145686
Cited by
-
CompSafeNano project: NanoInformatics approaches for safe-by-design nanomaterials.Comput Struct Biotechnol J. 2024 Dec 25;29:13-28. doi: 10.1016/j.csbj.2024.12.024. eCollection 2025. Comput Struct Biotechnol J. 2024. PMID: 39872495 Free PMC article.
-
UANanoDock: A Web-Based UnitedAtom Multiscale Nanodocking Tool for Predicting Protein Adsorption onto Nanoparticles.J Chem Inf Model. 2025 Apr 14;65(7):3142-3153. doi: 10.1021/acs.jcim.4c02292. Epub 2025 Mar 25. J Chem Inf Model. 2025. PMID: 40130988 Free PMC article.
References
-
- Lobaskin V.; Subbotina J.; Rouse I. Computational modelling of bionano interface. Europhys. Lett. 2023, 143, 57001.10.1209/0295-5075/acf33f. - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources