Noradrenaline and functional plasticity in kitten visual cortex: a re-examination
- PMID: 3932646
- PMCID: PMC1193054
- DOI: 10.1113/jphysiol.1985.sp015815
Noradrenaline and functional plasticity in kitten visual cortex: a re-examination
Abstract
A quantitative re-examination was made of the influence of noradrenergic depletion on the epigenesis of kitten visual cortex. Two methods were used to deplete noradrenaline at the cortical level: stereotaxically controlled injection of 6-hydroxydopamine (6-OHDA) in the coeruleus complex, from which the noradrenergic input to visual cortex arises; intraventricular injection of 6-OHDA. The latter chemical lesion also depleted dopamine levels in the brain. Lesion of the noradrenergic or catecholaminergic systems was performed neonatally or at an age of 3-4 weeks in kittens submitted to five different rearing procedures: normal rearing, dark rearing, monocular rearing, monocular exposure following dark rearing and monocular deprivation following normal rearing. Forty-two kittens between 3 and 12 weeks of age were used for this biochemical and electrophysiological study. Noradrenaline and dopamine levels were measured by a radioenzymatic method in the primary visual cortex of twenty-six kittens. A total of 1263 cells were recorded in area 17 of twenty-six kittens. Combined biochemical and electrophysiological data were obtained in ten 6-OHDA-lesioned kittens. Whatever the mode of chemical lesion used, cortical noradrenergic depletion failed to block either maturation or vision-dependent processes which are known to affect orientation selectivity and/or ocular dominance during the critical period. However, in some cases, the amplitude of the epigenetic functional modifications was slightly reduced in 6-OHDA-treated kittens. The cortical effects of monocular deprivation starting from the age of 5 weeks were studied quantitatively both in lesioned and intact kittens. Disappearance of noradrenaline in area 17 did not prevent the loss of binocularity in cortical cells. However, even when monocular occlusion had been maintained for 2 or 3 weeks in 6-OHDA-treated kittens, ocular dominance shifts were limited to a stage equivalent to that observed in the intact kitten after 5-8 days of monocular occlusion. The amplitude of this partial protective effect was found to be unrelated either to the delay following the chemical lesion, or to the level of noradrenaline remaining in lesioned kitten cortex. Although a putative gating role of noradrenaline cannot be excluded in the development of the intact animal, this report shows that its presence is not required for functional plasticity to occur in kitten area 17.
Similar articles
-
Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injections of 6-hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation.Exp Brain Res. 1985;59(1):30-5. doi: 10.1007/BF00237662. Exp Brain Res. 1985. PMID: 3926529
-
[Noradrenaline and plasticity of the visual cortex of the kitten: a reexamination].C R Seances Acad Sci III. 1982 Dec 6;295(12):745-50. C R Seances Acad Sci III. 1982. PMID: 6820308 French.
-
Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine.J Comp Neurol. 1979 May 1;185(1):139-61. doi: 10.1002/cne.901850109. J Comp Neurol. 1979. PMID: 429612
-
Norepinephrine hypothesis for visual cortical plasticity: thesis, antithesis, and recent development.Curr Top Dev Biol. 1987;21:367-89. doi: 10.1016/s0070-2153(08)60144-1. Curr Top Dev Biol. 1987. PMID: 2820654 Review. No abstract available.
-
Adrenergic regulation of visuocortical plasticity: a role of the locus coeruleus system.Prog Brain Res. 1991;88:599-616. doi: 10.1016/s0079-6123(08)63837-6. Prog Brain Res. 1991. PMID: 1687623 Review.
Cited by
-
Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injections of 6-hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation.Exp Brain Res. 1985;59(1):30-5. doi: 10.1007/BF00237662. Exp Brain Res. 1985. PMID: 3926529
-
The brain as a self-organizing system.Eur Arch Psychiatry Neurol Sci. 1986;236(1):4-9. doi: 10.1007/BF00641050. Eur Arch Psychiatry Neurol Sci. 1986. PMID: 3527709 Review.
-
Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset.J Neurophysiol. 2015 Sep;114(3):1974-86. doi: 10.1152/jn.00813.2014. Epub 2015 Jul 22. J Neurophysiol. 2015. PMID: 26203112 Free PMC article.
-
Reemergence of ocular dominance plasticity during recovery from the effects of propranolol infused in kitten visual cortex.Exp Brain Res. 1987;68(3):466-76. doi: 10.1007/BF00249791. Exp Brain Res. 1987. PMID: 2826211
-
Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity.Exp Brain Res. 1988;73(2):285-96. doi: 10.1007/BF00248220. Exp Brain Res. 1988. PMID: 3215305
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources