Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 12;103(9):e209920.
doi: 10.1212/WNL.0000000000209920. Epub 2024 Sep 27.

Association of Seizure Foci and Location of Tau and Amyloid Deposition and Brain Atrophy in Patients With Alzheimer Disease and Seizures

Affiliations

Association of Seizure Foci and Location of Tau and Amyloid Deposition and Brain Atrophy in Patients With Alzheimer Disease and Seizures

Alice D Lam et al. Neurology. .

Erratum in

Abstract

Background and objectives: Alzheimer disease (AD) is associated with a 2 to 3-fold increased risk of developing late-onset focal epilepsy, yet it remains unclear how development of focal epilepsy in AD is related to AD pathology. The objective of this study was to examine spatial relationships between the epileptogenic zone and tau deposition, amyloid deposition, and brain atrophy in individuals with AD who developed late-onset, otherwise unexplained focal epilepsy. We hypothesized that if network hyperexcitability is mechanistically linked to AD pathology, then there would be increased tau and amyloid deposition within the epileptogenic hemisphere.

Methods: In this cross-sectional study, we performed tau and amyloid PET imaging, brain MRI, and overnight scalp EEG in individuals with early clinical stages of AD who developed late-onset, otherwise unexplained focal epilepsy (AD-Ep). Participants were referred from epilepsy and memory disorders clinics at our institutions. We determined epilepsy localization based on EEG findings and seizure semiology. We quantified tau deposition, amyloid deposition, and atrophy across brain regions and calculated asymmetry indices for these measures. We compared findings in AD-Ep with those in a control AD group without epilepsy (AD-NoEp).

Results: The AD-Ep group included 8 individuals with a mean age of 69.5 ± 4.2 years at PET imaging. The AD-NoEp group included 14 individuals with a mean age of 71.7 ± 9.8 years at PET imaging. In AD-Ep, we found a highly asymmetric pattern of tau deposition, with significantly greater tau in the epileptogenic hemisphere. Amyloid deposition and cortical atrophy were also greater in the epileptogenic hemisphere, although the magnitudes of asymmetry were reduced compared with tau. Compared with AD-NoEp, the AD-Ep group had significantly greater tau asymmetry and trends toward greater asymmetry of amyloid and atrophy. AD-Ep also had significantly greater amyloid burden bilaterally and trends toward greater tau burden within the epileptogenic hemisphere, compared with AD-NoEp.

Discussion: Our results reveal a spatial association between the epileptogenic focus and tau deposition, amyloid deposition, and neurodegeneration in early clinical stages of AD. Within the limitations of a cross-sectional study with small sample sizes, these findings contribute to our understanding of the clinicopathologic heterogeneity of AD, demonstrating an association between focal epilepsy and lateralized pathology in AD.

PubMed Disclaimer

Conflict of interest statement

The authors report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Comment in

References

    1. Harris SS, Wolf F, De Strooper B, Busche MA. Tipping the scales: peptide-dependent dysregulation of neural circuit dynamics in Alzheimer’s disease. Neuron. 2020;107(3):417-435. doi: 10.1016/j.neuron.2020.06.005 - DOI - PubMed
    1. Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci. 2016;17(12):777-792. doi: 10.1038/nrn.2016.141 - DOI - PMC - PubMed
    1. Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16(4):311-322. doi: 10.1016/S1474-4422(17)30044-3 - DOI - PMC - PubMed
    1. Vöglein J, Ricard I, Noachtar S, et al. Seizures in Alzheimer’s disease are highly recurrent and associated with a poor disease course. J Neurol. 2020;267(10):2941-2948. doi: 10.1007/s00415-020-09937-7 - DOI - PMC - PubMed
    1. Busche MA, Chen X, Henning HA, et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2012;109(22):8740-8745. doi: 10.1073/pnas.1206171109 - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources