Exploiting Spatial Ionic Dynamics in Solid-State Organic Electrochemical Transistors for Multi-Tactile Sensing and Processing
- PMID: 39331857
- PMCID: PMC11578318
- DOI: 10.1002/advs.202405902
Exploiting Spatial Ionic Dynamics in Solid-State Organic Electrochemical Transistors for Multi-Tactile Sensing and Processing
Abstract
The human nervous system inspires the next generation of sensory and communication systems for robotics, human-machine interfaces (HMIs), biomedical applications, and artificial intelligence. Neuromorphic approaches address processing challenges; however, the vast number of sensors and their large-scale distribution complicate analog data manipulation. Conventional digital multiplexers are limited by complex circuit architecture and high supply voltage. Large sensory arrays further complicate wiring. An 'in-electrolyte computing' platform is presented by integrating organic electrochemical transistors (OECTs) with a solid-state polymer electrolyte. These devices use synapse-like signal transport and spatially dependent bulk ionic doping, achieving over 400 times modulation in channel conductance, allowing discrimination of locally random-access events without peripheral circuitry or address assignment. It demonstrates information processing from 12 tactile sensors with a single OECT output, showing clear advantages in circuit simplicity over existing all-electronic, all-digital implementations. This self-multiplexer platform offers exciting prospects for circuit-free integration with sensory arrays for high-quality, large-volume analog signal processing.
Keywords: in‐electrolyte computing; ion modulation; organic electrochemical transistor; self‐multiplexer platform; solid‐state; tactile sensors.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
An Interlayer Strategy for Low-Voltage Thin-Film Organic Electrochemical Transistors.Small Methods. 2025 May 13:e2500322. doi: 10.1002/smtd.202500322. Online ahead of print. Small Methods. 2025. PMID: 40364613
-
The Rising of Flexible Organic Electrochemical Transistors in Sensors and Intelligent Circuits.ACS Nano. 2025 Feb 4;19(4):4084-4120. doi: 10.1021/acsnano.4c12892. Epub 2025 Jan 20. ACS Nano. 2025. PMID: 39829276 Review.
-
Functionalized Organic Thin Film Transistors for Biosensing.Acc Chem Res. 2019 Feb 19;52(2):277-287. doi: 10.1021/acs.accounts.8b00448. Epub 2019 Jan 8. Acc Chem Res. 2019. PMID: 30620566 Review.
-
Organic electrochemical transistors in bioelectronic circuits.Biosens Bioelectron. 2021 Oct 15;190:113461. doi: 10.1016/j.bios.2021.113461. Epub 2021 Jun 23. Biosens Bioelectron. 2021. PMID: 34197997 Review.
-
In Liquido Computation with Electrochemical Transistors and Mixed Conductors for Intelligent Bioelectronics.Adv Mater. 2023 Apr;35(15):e2209516. doi: 10.1002/adma.202209516. Epub 2023 Feb 22. Adv Mater. 2023. PMID: 36813270
References
-
- Someya T., Bao Z., Malliaras G. G., Nature 2016, 540, 379. - PubMed
-
- Shastri B. J., Tait A. N., Ferreira de Lima T., Pernice W. H., Bhaskaran H., Wright C. D., Prucnal P. R., Nat. Photonics 2021, 15, 102.
-
- Gelinck G. H., Huitema H. E., van Veenendaal E., Cantatore E., Schrijnemakers L., van der Putten J. B., Geuns T. C., Beenhakkers M., Giesbers J. B., Huisman B. H., Meijer E. J., Benito E. M., Touwslager F. J., Marsman A. W., van Rens B. J., de Leeuw D. M., Nat. Mater. 2004, 3, 106. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources