Integration of transcriptomics, proteomics and loss-of-function screening reveals WEE1 as a target for combination with dasatinib against proneural glioblastoma
- PMID: 39332586
- PMCID: PMC12768573
- DOI: 10.1016/j.canlet.2024.217265
Integration of transcriptomics, proteomics and loss-of-function screening reveals WEE1 as a target for combination with dasatinib against proneural glioblastoma
Abstract
Glioblastoma is characterized by a pronounced resistance to therapy with dismal prognosis. Transcriptomics classify glioblastoma into proneural (PN), mesenchymal (MES) and classical (CL) subtypes that show differential resistance to targeted therapies. The aim of this study was to provide a viable approach for identifying combination therapies in glioblastoma subtypes. Proteomics and phosphoproteomics were performed on dasatinib inhibited glioblastoma stem cells (GSCs) and complemented by an shRNA loss-of-function screen to identify genes whose knockdown sensitizes GSCs to dasatinib. Proteomics and screen data were computationally integrated with transcriptomic data using the SamNet 2.0 algorithm for network flow learning to reveal potential combination therapies in PN GSCs. In vitro viability assays and tumor spheroid models were used to verify the synergy of identified therapy. Further in vitro and TCGA RNA-Seq data analyses were utilized to provide a mechanistic explanation of these effects. Integration of data revealed the cell cycle protein WEE1 as a potential combination therapy target for PN GSCs. Validation experiments showed a robust synergistic effect through combination of dasatinib and the WEE1 inhibitor, MK-1775, in PN GSCs. Combined inhibition using dasatinib and MK-1775 propagated DNA damage in PN GCSs, with GCSs showing a differential subtype-driven pattern of expression of cell cycle genes in TCGA RNA-Seq data. The integration of proteomics, loss-of-function screens and transcriptomics confirmed WEE1 as a target for combination with dasatinib against PN GSCs. Utilizing this integrative approach could be of interest for studying resistance mechanisms and revealing combination therapy targets in further tumor entities.
Keywords: Computational integration; Dasatinib; Loss-of-function shRNA screen; Phosphoproteomics; WEE1.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
References
-
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta neuropathologica, 131 (2016) 803–820. - PubMed
-
- Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Dirven L, French P, Hegi ME, Jakola AS, Platten M, Roth P, Rudà R, Short S, Smits M, Taphoorn MJB, von Deimling A, Westphal M, Soffietti R, Reifenberger G, Wick W, EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood, Nat Rev Clin Oncol, 18 (2021) 170–186. - PMC - PubMed
-
- Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L, The somatic genomic landscape of glioblastoma, Cell, 155 (2013) 462–477. - PMC - PubMed
-
- Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Fruhwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Durken M, Kulozik AE, Madden J, Donson A, Foreman NK, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm CM, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth AM, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski PP, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor MD, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister SM, Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma, Cancer Cell, 22 (2012) 425–437. - PubMed
-
- Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, Barthel F, Cho HJ, Lin YH, Satani N, Martinez-Ledesma E, Zheng S, Chang E, Gabriel Sauve CE, Olar A, Lan ZD, Finocchiaro G, Phillips JJ, Berger MS, Gabrusiewicz KR, Wang G, Eskilsson E, Hu J, Mikkelsen T, DePinho RA, Muller F, Heimberger AB, Sulman EP, Nam DH, Verhaak RGW, Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment, Cancer Cell, 33 (2018) 152. - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
