Calcium transport in membrane vesicles of Bacillus subtilis
- PMID: 3934142
- PMCID: PMC219329
- DOI: 10.1128/jb.164.3.1294-1300.1985
Calcium transport in membrane vesicles of Bacillus subtilis
Abstract
Right-side-out membrane vesicles of Bacillus subtilis W23 grown on tryptone-citrate medium accumulated Ca2+ under aerobic conditions in the presence of a suitable electron donor. Ca2+ uptake was an electrogenic process which was completely inhibited by carbonyl cyanide m-chlorophenylhydrazone or valinomycin and not by nigericin. This electrogenic uptake of calcium was strongly dependent on the presence of phosphate and magnesium ions. The system had a low affinity for Ca2+. The kinetic constants in membrane vesicles were Km = 310 microM Ca2+ and Vmax = 16 nmol/mg of protein per min. B. subtilis also possesses a Ca2+ extrusion system. Right-side-out-oriented membrane vesicles accumulated Ca2+ upon the artificial imposition of a pH-gradient, inside acid. This system had a high affinity for Ca2+; Km = 17 microM Ca2+ and Vmax = 3.3 nmol/mg of protein per min. Also, a membrane potential, inside positive, drove Ca2+ transport via this Ca2+ extrusion system. Evidence for a Ca2+ extrusion system was also supplied by studies of inside-out-oriented membrane vesicles in which Ca2+ uptake was energized by respiratory chain-linked oxidation of NADH or ascorbate-phenazine methosulfate. Both components of the proton motive force, the pH gradient and the membrane potential, drove Ca2+ transport via the Ca2+ extrusion system, indicating a proton-calcium antiport system with a H+ to Ca2+ stoichiometry larger than 2. The kinetic parameters of this Ca2+ extrusion system in inside-out-oriented membranes were Km = 25 microM and Vmax = 0.7 nmol/mg of protein per min.
Similar articles
-
Active transport of manganese in isolated membrane vesicles of Bacillus subtilis.J Bacteriol. 1975 Jul;123(1):123-7. doi: 10.1128/jb.123.1.123-127.1975. J Bacteriol. 1975. PMID: 49350 Free PMC article.
-
The properties of citrate transport in membrane vesicles from Bacillus subtilis.Eur J Biochem. 1983 Jul 15;134(1):151-6. doi: 10.1111/j.1432-1033.1983.tb07545.x. Eur J Biochem. 1983. PMID: 6305655
-
Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.Membr Biochem. 1978;1(1-2):73-88. doi: 10.3109/09687687809064160. Membr Biochem. 1978. PMID: 116111
-
Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis.J Bacteriol. 1975 Nov;124(2):613-22. doi: 10.1128/jb.124.2.613-622.1975. J Bacteriol. 1975. PMID: 171251 Free PMC article.
-
Active transport of Ca2+ in bacteria: bioenergetics and function.Mol Cell Biochem. 1981 Apr 27;36(2):65-84. doi: 10.1007/BF02354906. Mol Cell Biochem. 1981. PMID: 6113540 Review.
Cited by
-
Immunocytochemical localization of a calmodulinlike protein in Bacillus subtilis cells.J Bacteriol. 1999 Aug;181(15):4605-10. doi: 10.1128/JB.181.15.4605-4610.1999. J Bacteriol. 1999. PMID: 10419960 Free PMC article.
-
Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells.J Bacteriol. 1990 Aug;172(8):4161-70. doi: 10.1128/jb.172.8.4161-4170.1990. J Bacteriol. 1990. PMID: 2115863 Free PMC article.
-
ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis.J Bacteriol. 1992 Jan;174(1):116-21. doi: 10.1128/jb.174.1.116-121.1992. J Bacteriol. 1992. PMID: 1530844 Free PMC article.
-
Resistance to trifluoroperazine, a calmodulin inhibitor, maps to the fabD locus in Escherichia coli.Mol Gen Genet. 1995 Mar 10;246(5):628-37. doi: 10.1007/BF00298970. Mol Gen Genet. 1995. PMID: 7700236
-
Novel method to achieve crystallinity of calcite by Bacillus subtilis in coupled and non-coupled calcium-carbon sources.AMB Express. 2020 Sep 29;10(1):174. doi: 10.1186/s13568-020-01111-6. AMB Express. 2020. PMID: 32990816 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous