Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1985 Sep-Oct;80(5):459-74.
doi: 10.1007/BF01907911.

The vascular endothelium: a survey of some newly evolving biochemical and physiological features

Review

The vascular endothelium: a survey of some newly evolving biochemical and physiological features

E Gerlach et al. Basic Res Cardiol. 1985 Sep-Oct.

Abstract

The morphological, biochemical and functional characterization of the vascular endothelium has become possible through the broad use of electron microscopic methods, the successful elaboration and application of techniques for the isolation and cultivation of endothelial cells in vitro and through sophisticated studies on vessel and organ preparations, both in vitro and in vivo. In this survey emphasis is placed on certain methodological aspects of endothelial cell culture as well as on biochemical, physiological and pathophysiological features of the vascular endothelium. Endothelial cells can be propagated in culture dishes, the most commonly applied method, on suspended microbeads (dextrane, polyacrylamide), a technique giving large yields, or on thin porous membranes, a procedure suited for the study of transport processes across the endothelial layer. Different structural, biochemical and functional properties of the luminal (apical) and abluminal (basal) cell membrane determine important polarity features of the endothelium. Endothelial cells exhibit a variety of biochemical pathways and are characterized by high metabolic activities. Of particular interest is the large content of ATP in endothelial cells of different vascular origin. The rapid intracellular degradation of adenine nucleotides to nucleosides and bases, which are constantly released, is balanced by synthesis, mainly via salvage pathways. In endothelial cells of microvascular origin uric acid predominates by far as the final purine degradative because of the presence of xanthine dehydrogenase in these cells; in the macrovascular endothelium purine breakdown proceeds only to hypoxanthine, since xanthine dehydrogenase is lacking. In this connection interrelations between nucleotide catabolism in myocardial tissue and in coronary endothelial cells are discussed, also with respect to the participation of endothelial xanthine oxidase in the formation of oxygen radicals during post-ischemic reperfusion of the heart. Vascular endothelial cells of different origin are also capable of a rapid extracellular degradation of ATP, ADP and AMP to adenosine by means of specific ecto-nucleotidases. The subsequent fate of extracellularly formed adenosine appears to be different for endothelial cells of microvascular (preferential adenosine uptake) and macrovascular origin (preferential extracellular adenosine accumulation), thus implying functional consequences for platelet aggregation.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

References

    1. Biochim Biophys Acta. 1983 Apr 5;762(2):295-301 - PubMed
    1. Annu Rev Pharmacol Toxicol. 1984;24:175-97 - PubMed
    1. J Clin Invest. 1978 Nov;62(5):923-30 - PubMed
    1. Circ Res. 1980 Sep;47(3):301-11 - PubMed
    1. Biochem J. 1975 Feb;146(2):497-9 - PubMed