Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 7;16(43):7372-7380.
doi: 10.1039/d4ay01480d.

A dual-mode homogeneous electrochemical-colorimetric biosensing sensor for carcinoembryonic antigen detection based on a microfluidic paper-based analysis device

Affiliations

A dual-mode homogeneous electrochemical-colorimetric biosensing sensor for carcinoembryonic antigen detection based on a microfluidic paper-based analysis device

Yao Zhang et al. Anal Methods. .

Abstract

Dual-mode-based sensors have drawn a lot of interest due to their high accuracy and sensitivity compared to single-response systems. A simple electrochemical and colorimetric dual-mode sensor based on enzyme-linked immunosorbent assay (ELISA), without complex electrode surface modification, was developed for accurate and sensitive detection of carcinoembryonic antigen (CEA). The target CEA is recognized by an antibody coupled to horseradish peroxidase (HRP), which then oxidizes the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to generate both a colorimetric and an electrochemical signal. A paper-based analysis device (μPAD) with dual-mode homogeneous sensing microfluidic was created; three paper-based detection areas for colorimetric testing, and a two-electrode embedded detection area for electrochemical testing. When applying colorimetric analysis technology, the linear range of CEA detection is 0.6-40 ng mL-1, and the limit of detection (LOD) is 0.2 ng mL-1. The linear range is 0.1-40 ng mL-1 and the LOD is 0.03 ng mL-1 by applying electrochemical analysis. The visibility and intuitiveness of colorimetry provide a reference for higher sensitivity and quick response of the electrochemical method. A smartphone application (APP) was also developed to realize the dual extraction of colorimetric signals. The colorimetric detection system based on ELISA can provide a new path for the development of electrochemical sensing and makes it have inherent self-verification and self-correction functions and is expected to provide more reliable and accurate detection results.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources