Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 14;25(10):6555-6569.
doi: 10.1021/acs.biomac.4c00717. Epub 2024 Oct 1.

Micellar Nanogels from Alginate-Based Diblock Copolysaccharides

Affiliations

Micellar Nanogels from Alginate-Based Diblock Copolysaccharides

Martin Fauquignon et al. Biomacromolecules. .

Abstract

Alginates are marine polysaccharides known for their ability to selectively bind calcium ions and form hydrogels. They are widely used in biomedical applications but are challenging to produce as nanogels. Here we introduce a self-assembly route to create stable alginate-based nanogels under near-equilibrium conditions. Guluronate (G) blocks, which interact with divalent cations such as Ca2+, Ba2+, and Sr2+, were extracted from alginates and covalently linked through their reducing end to the reducing end of dextran (Dex) chains, forming linear block copolymers that self-assemble into micellar nanogels with a core-corona structure in the presence of these ions. Real-time dynamic light scattering (DLS) and small-angle neutron scattering (SANS) were used to study the self-assembly mechanism of the copolymer during dialysis against divalent ions. For the G12-b-Dex51 copolymer, we achieved spherical micelles with an 8 nm radius and an aggregation number of around 20. Although the type of divalent cation affected micelle stability, it did not influence their size. Micellar nanogels are dynamic structures, capable of ion exchange, and can disassemble with chelating agents like ethylenediamine tetraacetic acid (EDTA).

PubMed Disclaimer

References

Publication types

LinkOut - more resources